Answer:
Bonding Order = number of bonding electrons – number of antibonding electrons/2.
So for CO2, there is a total of 16 electrons, 8 of which are antibonding electrons.
So 16 – 8 = 8; divided by 2 = 4. So, 4 is the bonding order of CO2. The molecular structure of CO2 looks like this:
..~-~~..
O=C=O
..~-~~..
This is a problem involving heat transfer through radiation. The solution to this problem would be to use the formula for heat flux.
ΔQ/Δt = (1000 W/m²)∈Acosθ
A is the total surface area:
A = (1 m²) + 4(1.8 cm)(1m/100 cm)(√(1 m²))
A = 1.072 m²
ΔQ is the heat of melting ice.
ΔQ = mΔHfus
Let's find its mass knowing that the density of ice is 916.7 kg/m³.
ΔQ = (916.7 kg/m³)(1 m²)(1.8 cm)(1m/100 cm)(<span>333,550 J/kg)
</span>ΔQ = 5,503,780 J
5,503,780 J/Δt = (1000 W/m²)(0.05)(1.072 m²)(cos 33°)
<em>Δt = 122,434.691 s or 34 hours</em>
Combined gas law is
PV/T = K (constant)
P = Pressure
V = Volume
T = Temperature in Kelvin
For two situations, the combined gas law can be applied as,
P₁V₁ / T₁ = P₂V₂ / T₂
P₁ = 3.00 atm P₂ = standard pressure = 1 atm
V₁ = 720.0 mL T₂ = standard temperature = 273 K
T₁ = (273 + 20) K = 293 K
By substituting,
3.00 atm x 720.0 mL / 293 K = 1 atm x V₂ / 273 K
V₂ = 2012.6 mL
hence the volume of gas at stp is 2012.6 mL
Answer: Evaporation of salt water
Explanation: During the process of evaporating salt water which involves simple distillation, pure water is separated with salt molecules.
When heated water evaporates from the solution since it is less dense. When condensed it becomes pure water and salt is left out since it is more denser.
Answer:
The water freezes and becomes solid ice