Answer:
Explanation:
Speed given = 125 m /min
125 /60 m /s
In 450 second it will travel
= 450 x 125 / 60
=937.5 m.
As the distance is covered in less than 450 seconds , The distance must be less than 937.5 m
In 400 seconds , it will travel
= 400 x 125 / 60
833.33 m
Since the distance is covered in more than 400 seconds , the distance must be more than ie 833.33 .
Hence the distance covered is more than .833 m but less than 937.5
In either case these distance are more than .8 km .
Set this up as a proportion.
.002 m^3/20 degrees = x/50 degrees
solve for x
x = .005 m^3
If you found this helpful, please brainliest me!
Answer:
1.24 m/s
Explanation:
Metric unit conversion:
9.25 mm = 0.00925 m
5 mm = 0.005 m
The volume rate that flow through the single pipe is

This volume rate should be constant and divided into the 4 narrower pipes, each of them would have a volume rate of

So the flow speed of each of the narrower pipe is:

Answer:
I dont see a picture where is it?
Explanation:
I cannot see anything L question Luestion
Answer:
measuring the zero intensity point, we can deduce the movement of the screen.
The distance from the center of the pattern to the first zero is proportional to the distance to the screen,
Explanation:
The expression for the diffraction phenomenon is
a sin θ = m λ
for the case of destructive interference. In general the detection screen is quite far from the grid, let's use trigonometry to find the angles
tan θ = y / L
in these experiments the angles are small
tan θ = sin θ / cos θ = sin θ
sunt θ = y / L
we substitute
a
= m λ
y = m L λ / a
therefore, by carefully measuring the zero intensity point, we can deduce the movement of the screen.
The distance from the center of the pattern to the first zero is proportional to the distance to the screen, so you can know where the displacement occurs, it should be clarified that these displacements are very small so the measurement system must be capable To measure quantities on the order of hundredths of a millimeter, a micrometer screw could be used.