Answer:
Vertical Height = 0.784 meter, Speed back at starting point = 10 m/s
Explanation:
Given Data:
V is the overall velocity vector,
and
are its initial vertical and horizontal components

To find:
Max Height
achieved
Calculation:
1) Using the
equation of motion, we know

2) In terms of gravity
height
and the vertical component of Velocity
.
3) As
as at maximum height the vertical component of velocity is zero maximum height achieved

putting values
4) 
5) As for the speed when it reaches back its starting point, it will have a speed similar to its launching speed, the reason being the absence of air friction (Air drag)
Answer:
166 666 666.7 years
Explanation:
We start the question by making the units uniform. We are told that the continents move at 3 cm/year = 0.03 m/year.
We are also told that the continents are now 5000 km = 5 000 000 m apart
So to calculate the time it took for them to be this far apart
t = distance/speed
t = 5 000 000 m/(0.03 m/year) = 166 666 666.7 years
The radius of the sphere in meters is ,r =
Think about the angle the ground and the shadow make. Since the sun's beams are parallel, the angle created by the stick's shadow is also equal. Since the stick is 1 m high and its shadow is 2 m long, we know that the stick's angle is arctan 1/2. Therefore, by thinking of a right-angled triangle,
r/10 = tan [arctan(1/2)] = tan (1/2)
Since, tan (θ/2) = 1-cos(θ) / sin(θ)
we find that,
r/10 = 
Hence, r = 
So, the radius of the sphere in meters is ,r =
Learn more about radius (r) of the sphere here;
brainly.com/question/14100787
#SPJ4