Answer:
a).
kJ/kg
b).
kJ/kg-K
Explanation:
a). The energy rate balance equation in the control volume is given by




kJ/kg
b). Entropy produced from the entropy balance equation in a control volume is given by





kJ/kg-K
Answer:
6m/s
Explanation:
the original momentum = mass x velocity = 8x (60+10) = 560
momentum after = mass x velocity of the school bag + mass x velocity of the boy = 10x20 + 60x A
200+60A = 560
A=6
Answer:
Explanation:
Initial kinetic energy of the system = 1/2 mA v0²
If Vf be the final velocity of both the carts
applying conservation of momentum
final velocity
Vf = mAvo / ( mA +mB)
kinetic energy ( final ) = 1/2 (mA +mB)mA²vo² / ( mA +mB)²
= mA²vo² / 2( mA +mB)
Given 1/2 mA v0² / mA²vo² / 2( mA +mB) = 6
mA v0² x ( mA +mB) / mA²vo² = 6
( mA +mB) / mA = 6
mA + mB = 6 mA
5 mA = mB
mB / mA = 5 .
Answer:
The correct option is A = 1960 N/m²
Explanation:
Given that,
Mass m= 20,000kg
Area A = 100m²
Pressure different between top and bottom
Assume the plane has reached a cruising altitude and is not changing elevation. Then sum the forces in the vertical direction is given as
∑Fy = Wp + FL = 0
where
Wp = is the weight of the plane, and
FL is the lift pushing up on the plane.
Let solve for FL since the mass of the plane is given:
Wp + FL = 0
FL = -Wp
FL = -mg
FL = -20,000× -9.81
FL = 196,200N
FL should be positive since it is opposing the weight of the plane.
Let Equate FL to the pressure differential multiplied by the area of the wings:
FL = (Pb −Pt)⋅A
where Pb and Pt are the static pressures on bottom and top of the wings, respectively
FL = ∆P • A
∆P = FL/A
∆P = 196,200 / 100
∆P = 1962 N/m²
∆P ≈ 1960 N/m²
The pressure difference between the top and bottom surface of each wing when the airplane is in flight at a constant altitude is approximately 1960 N/m². Option A is correct