Dew - small water drops, happens all the time, even to windows.
Momentum = mass x velocity so if velocity is kept same and mass is increased then momentum will increase.
<span>The Appalachian Mountains were formed when colliding tectonic plates folded and upthrust, mainly during the Permian Period and again in the Cretaceous Period. The folds and thrusts were then eroded and carved by wind, streams and glaciers. These erosive processes are ongoing, and the topography of the Appalachian Mountains continue to change. They have changed with the miles of land that are cleared of all vegetation and topsoil. In the 1970's coal miners literally blow away the top of a mountain to get to the coal underneath.</span>
Answer:
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg
Explanation:
Hi there!
Due to conservation of energy, the potential energy (PE) of the mass at a height of 3.32 m will be transformed into elastic potential energy (EPE) when it falls on the mattress:
PE = EPE
m · g · h = 1/2 k · x²
Where:
m = mass.
g = acceleration due to gravity.
h = height.
k = spring constant.
x = compression distance
The maximum compression distance is 0.1289 m, then, the maximum elastic potential energy will be the following:
EPE =1/2 k · x²
EPE = 1/2 · 65144 N/m · (0.1289 m)² = 541.2 J
Then, using the equation of gravitational potential energy:
PE = m · g · h = 541.2 J
m = 541.2 J/ g · h
m = 541.2 kg · m²/s² / (9.8 m/s² · 3.32 m)
m = 16.6 kg
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg.