Explanation:
SADMEP
-2(bx-5) = 16 distribute
-2bx +10 = 16 subtracte
-10 -10
-2bx = 6
divide by -2x (on both sides)
b = -3x
<h3><u>Answer;</u></h3>
Cannon-Bard theory
<h3><u>Explanation</u>;</h3>
- <em><u>The idea that an emotion-arousing stimulus is simultaneously routed to the cortex and to the sympathetic nervous system is central to the Cannon-Band theory.</u></em>
- Cannon-Bard theory states that we feel emotions and experience physiological reactions such as sweating, trembling, and muscle tension simultaneously.
- The theory argues that we experience physiological arousal and emotion at the same time. The theory gives more attention to the role of thought or outward behavior as compared to James-Lange.
Answer:
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL
<em><u>Glass that will float</u></em>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL
Explanation:
Density is the property of matter that states the ratio of the amount of matter, its mass, to the space occupied by it, its volume.
So, the mathematical expression for the density is:
By comparing the density of a material with the density of a liquid, you will be able to determine whether object will float, sink, or do neither when immersed in the liquid.
The greater the density of an object the more it will try to sink in the liquid.
As you must have experienced many times an inflatable ball (whose density is very low) will float in water, but a stone (whose denisty is greater) will sink in water.
The flotation condition may be summarized by:
- When the density of the object < density of the liquid, the object will float
- When the density of the object = density of the liquid: the object will neither float nor sink
- When the density of the object > density of the liquid: the object will sink.
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL, because 2.57 > 2.46.
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL, because 3.05 > 1.65.
<u><em>Glass that will float</em></u>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL, because 2.27 < 2.62.
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL, because 2.26 < 2.34.
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL, because 2.16 = 2.16
Answer:
a) No. of moles of hydrogen needed = 5.4 mol
b) Grams of ammonia produced = 27.2 g
Explanation:

a)
No. of moles of nitrogen = 1.80 mol
1 mole of nitrogen reacts with 3 moles of hydrogen
1.80 moles of nitrogen will react with
= 1.80 × 3 = 5.4 moles of hydrogen
b)
No. of moles of hydrogen = 2.4 mol
It is given that nitrogen is present in sufficient amount.
3 moles of hydrogen produce 2 moles of 
2.4 moles of hydrogen will produce
= 
Molar mass of ammonia = 17 g/mol
Mass in gram = No. of moles × Molar mass
Mass of ammonia in g = 1.6 × 17
= 27.2 g