To solve this problem it is necessary to apply the concepts related to the flow as a function of the volume in a certain time, as well as the potential and kinetic energy that act on the pump and the fluid.
The work done would be defined as
Where,
PE = Potential Energy
KE = Kinetic Energy
Where,
m = Mass
g = Gravitational energy
h = Height
v = Velocity
Considering power as the change of energy as a function of time we will then have to
The rate of mass flow is,
Where,
= Density of water
A = Area of the hose
The given radius is 0.83cm or m, so the Area would be
We have then that,
Final the power of the pump would be,
Therefore the power of the pump is 57.11W
Answer: The changing magnetic field caused by the material's motion induces a current in the coil of wire proportional to the change in field. If a 0 is represented, the magnetic field does not change between the two domains of a bit, so no current is induced as the magnetic material passes the coil.
Answer:
Explanation:
To develop this exercise we proceed to use the kinetic energy equations,
In the end we replace
Here
meaning the 4 wheels,
So replacing
So,
In general, that's not possible, unless the three numbers relate to
very specific quantities.
For example, if the three numbers are the object's height, temperature,
and cost, then they are of no help at finding the object's velocity.