Answer:

Explanation:
given,
total deflection = 4.12 cm
Electric field = 1.1 ×10³ V/m
plate length = 6 cm
distance between them = 12 cm
using formula

q = 1.6 × 10⁻¹⁹ C
m = 9.11 x 10⁻³¹ kg
d = 0.06 m
L = 0.12 m

v_0 = 6496355.63 m/s




Answer:
<h2>
The magnitude of the magnetic is 0.145 T</h2>
Explanation:
Given :
Speed of proton 
Mass of proton
Kg
The force on the proton in magnetic field is given by,

But
(∵ Force is perpendicular to the velocity so
)

When particle enter in magnetic field at the angle of 90° so particle moves in circle
So force is given by,

Where
radius but in our case 0.23 m,
C
By comparing above two equation,


T
Answer: A) highly mobile electrons in the valence shell
Explanation: conductivity in metals is a result of the movement of electrically charged particles—the electrons. These free electrons also known as valence electrons are free to move, and as a result they can travel through the lattice that forms the physical structure of a metal. The presence of valence electrons determines a metal's conductivity. However, several other factors can affect the conductivity of a metal such as impurities, temperature, magnetic fields etc.
Answer:
a) K = 2/3 π G m ρ R₁³ / R₂
, b) U = - G m M / r
Explanation:
The law of universal gravitation is
F = G m M / r²
Part A
Let's use Newton's second law
F = m a
The acceleration is centripetal
a = v² / R₂
G m M / R₂² = m v² / R₂
v² = G M / R₂
They give us the density of the planet
ρ = M / V
V = 4/3 π R₁³
M = ρ V
M = ρ 4/3 π R₁³
v² = 4/3 π G ρ R₁³ / R₂
K = ½ m v²
K = ½ m (4/3 π G ρ R₁³ / R₂)
K = 2/3 π G m ρ R₁³ / R₂
Part B
Potential energy and strength are related
F = - dU / dr
∫ dU = - ∫ F. dr
The force was directed towards the center and the vector r outwards therefore there is an angle of 180º between the two cos 180 = -1
U- U₀ = G m M ∫ dr / r²
U - U₀ = G m M (- r⁻¹)
We evaluate for
U - U₀ = -G m M (1 /
- 1 /
)
They indicate that for ri = ∞ U₀ = 0
U = - G m M / r