Explanation:
Remember that power is defined as how much Work is done per unit of time.

Work is defined as the amount of force applied across a certain distance.

Since in both cases of climbing the ladder (on Earth and the moon), Luke coveres the same amount of <em>distance </em>in the same amount of <em>time</em>, we are only left with one difference between the two cases - gravity.
If you were to carry your backpack on the moon with the same load of text books, it would take less force to pick it up on the moon. Therefore, Luke expends less effort on the environment with less gravity - the moon.
To find the difference factor - you would want to divid the gravitational contants between earth and the moon.
Given conditions:
height of object = 7.5cmdistance of object from mirror = 14 cmfocus length = -7 cmimage distance = ?
Using mirror formula:
1/(focus length) = 1/(object distance) + 1/(image distance)
or, -1/7 = 1/14 + 1/(image distance)
or, image distance = -4.66cm (the image formed is a virtual image)
Also, magnification of image is:
image height /height of object = - image distance /object distance
or, image height = - image distance / object distance * height of object
or, image height = -(-4.66) / 14 * 7.5 = 2.49 = 3(nearest whole number)
Answer:
a) a = 4.9 m/s²
b) a = 1.5 m/s²
Explanation:
no friction
F = ma
gsinθ = ma
a = gsinθ
a = 9.8sin30
a = 4.9 m/s²
friction
gsinθ - μmgcosθ = ma
a = g(sinθ - μcosθ)
a = 9.8(sin30 - 0.4cos30)
a = 1.5051...
Answer:
14,300 lines per cm
Explanation:
Answer:
14,300 cm per line
Explanation:
λ400 nm to 400nm
We can find the maximum number of lines per centimeter, which is reciprocal of the least distance separating two adjacent slits, using the following equation.
mλ = dsin (θ)
In this equation,
m is the order of diffraction.
λ is the wavelength of the incident light.
d is the distance separating the centers of the two slits.
θ is the angle at which the mth order would diffract.
To find the least separation that allows the observation of one complete order of spectrum of the visible region, we use the maximum wavelength of the visible region is 700 nm.
d = mλ / sin (θ)
As we want the distance d to be the smallest then sin (θ) must be the greatest, and the greatest value of the sin (θ) is 1. For that we also use the longest wavelength because using the smallest wavelength, the longest wavelength would not be diffracted.
d = mλ / sin (θ)
d = 1 x 700nm / 1
= 700 nm
So, the least separation that would allow for the possibility of observing complete first order of the visible region spectra is 700 nm, and knowing the least separation we can find the maximum number of lines per cm, which is the reciprocal of the number of lines per cm.
n = 1/d
= 1 / 700 x 
= 1, 430,000 lines per m
= 14,300 lines per cm
<u>The maximum number of lines per cm, that would allow for the observation of the complete first order visible spectra.</u>