Answer:
Rolling friction is much smaller than sliding friction because Rolling friction is considerably less than sliding friction as there is no work done against the body that is rolling by the force of friction. For a body to start rolling a small amount of friction is required at the point where it rests on the other surface, else it would slide instead of roll.
Rolling Friction example: Anything with weels (cars,skateboards) or a ball rooling.
Sliding Friction example: Bicycle brakes,skinning your knee walking,writing.
It’s used in measuring distance from earth with other celestial object. Hope this helps mark brainest
Answer:
If you mean Lewis dot diagrams, aka electron-dot diagrams, then these are diagrams that show the bonding between atoms of a molecule, and the lone pairs of electrons that may exist in the molecule.
Explanation:
As the ball is moving in air as well as we have to neglect the friction force on it
So we can say that ball is having only one force on it that is gravitational force
So the force on the ball must have to be represented by gravitational force and that must be vertically downwards
So the correct FBD will contain only one force and that force must be vertically downwards
So here correct answer must be
<em>Diagram A shows a box with a downward arrow. </em>
Answer:
(a): a = 0.4m/s²
(b): α = 8 radians/s²
Explanation:
First we propose an equation to determine the linear acceleration and an equation to determine the space traveled in the ramp (5m):
a= (Vf-Vi)/t = (2m/s)/t
a: linear acceleration.
Vf: speed at the end of the ramp.
Vi: speed at the beginning of the ramp (zero).
d= (1/2)×a×t² = 5m
d: distance of the ramp (5m).
We replace the first equation in the second to determine the travel time on the ramp:
d = 5m = (1/2)×( (2m/s)/t)×t² = (1m/s)×t ⇒ t = 5s
And the linear acceleration will be:
a = (2m/s)/5s = 0.4m/s²
Now we determine the perimeter of the cylinder to know the linear distance traveled on the ramp in a revolution:
perimeter = π×diameter = π×0.1m = 0.3142m
To determine the angular acceleration we divide the linear acceleration by the radius of the cylinder:
α = (0.4m/s²)/(0.05m) = 8 radians/s²
α: angular aceleration.