Answer:
So the minimum force is
32.2Newton
Explanation:
To solve for the minimum force, let us assume it to be F (N)
So
F=mgsinA
But
=>>>> coefficient of static friction x (F + mgcosA
=>3 x 9.8 x sin35 = 0.3 x (F + 3 x 9.8 x cos35)
So making F subject of formula
F + 24.0 = 56.2
F = 32.2N
Explanation:
Since, it is mentioned the there occurs no change in the temperature. This also means that there will occur no change in thermal energy of the system.
Hence,
= 0. And, as
= 0 then there will be no work involved. This means that total energy added to the house will return to the outside air as heat.
Therefore,
Q = -(19000 J + 2000 J)
= -21000 J
or, |Q| = 21000 J
Thus, we can conclude that the magnitude of the energy transfer between the house and the outside air is 21000 J.
Answer:
Compression Test
Explanation:
The Specimen is undergoing a compression test. It is similar to tensile test with the difference that the force is compressive and applied along the direction of stress. Both Tensile and compression tests are performed on Universal Testing machine. Compression test is done to determine the product's reaction when it is compressed, squashed and crushed.
Get a pull chord light switch installed in her bathroom by a qualified electrician asap. Meanwhile, keep hands as dry as possible, and try not to go near that switch until it's either been properly earthed, or whatever the problem actually is, and get qualified advice on what the problem is. Don't have wet feet either, and don't stand in puddles of water whilst operating - i she has to - the switch. 250V AC mains can be lethal, and at least painful.
Answer:

Explanation:
We can assume this problem as two concentric spherical metals with opposite charges.
We have also to take into account the formulas for the electric field and the capacitance. Hence we have

Where k is the Coulomb's constant. Furthermore, by taking into account the expression for the potential and by integrating
![dV=Edr\\\\V=\int_{R_1}^{R_2}Edr=-\int_{R_1}^{R_2}\frac{kQ}{r^2}dr\\\\V=kQ[\frac{1}{R_2}-\frac{1}{R_1}]](https://tex.z-dn.net/?f=dV%3DEdr%5C%5C%5C%5CV%3D%5Cint_%7BR_1%7D%5E%7BR_2%7DEdr%3D-%5Cint_%7BR_1%7D%5E%7BR_2%7D%5Cfrac%7BkQ%7D%7Br%5E2%7Ddr%5C%5C%5C%5CV%3DkQ%5B%5Cfrac%7B1%7D%7BR_2%7D-%5Cfrac%7B1%7D%7BR_1%7D%5D)
Hence, the capacitance is
![C=\frac{1}{k[\frac{1}{R_2}-\frac{1}{R_1}]}](https://tex.z-dn.net/?f=C%3D%5Cfrac%7B1%7D%7Bk%5B%5Cfrac%7B1%7D%7BR_2%7D-%5Cfrac%7B1%7D%7BR_1%7D%5D%7D)
but R1=a and R2=b

HOPE THIS HELPS!!