Answer:
The cannonball and the ball will both take the same amount of time before they hit the ground.
Explanation:
For a ball fired horizontally from a given height, there is only a vertical acceleration on it towards the ground. This acceleration is equal to the acceleration due to gravity (g = 9.81 m/s^2). A ball dropped from a height will also only experience the same vertical acceleration downwards which is also equal to g = 9.81 m/s^2.
Therefore both the cannonball and the ball will take the same amount of time to hit the ground if they are released/fired from the same height.
Coulomb's Law: Force = k x q1x q2 divided distance square
where k=9x10^9 , q1 and q2 are the charge
So if you distance is halved, your force is stronger by 4 times
and if you distance is doubled, your force is 1/4
Ask me again if you aren't clear :)
Vf = Final velocity.
Vi = initial velocity
a = acceleration.
t = time
Vf = Vi + at
Vf = 0 + (2 m/s^2)(3s)
Vf = 6 m/s south
If it is not exposed to sunlight often... then it might not be able to produce sufficient amounts