I think…
0=2 : no solutions
2=2 : infinite solutions
Try this explanation:
1. if to re-write the given function as:

then it is possible to define its range:
2)
![\lim_{x \to+ \infty}[1- \frac{C}{e^x+C}]=1; \\ \lim_{x \to- \infty}[1- \frac{C}{e^x+C}]=0](https://tex.z-dn.net/?f=%20%5Clim_%7Bx%20%5Cto%2B%20%5Cinfty%7D%5B1-%20%5Cfrac%7BC%7D%7Be%5Ex%2BC%7D%5D%3D1%3B%20%20%5C%5C%20%5Clim_%7Bx%20%5Cto-%20%5Cinfty%7D%5B1-%20%5Cfrac%7BC%7D%7Be%5Ex%2BC%7D%5D%3D0)
answer: (0;1)
Answer:
Step-by-step explanation:
each Triangle is 180° so get 180-60-30 and whatever’s left that’s your answer
Answer:
x=3y-11
then now putting the value of x in second equation
4(3y-11)-3y =26
12y - 44-3y=26
9y=44+26
9y=70
y=70/9
now putting the value of y in 1st equation then
x=3*70/9-11
x=37/3
now checking this is correct or not in 2nd eqn
4*37/3-3*70/9=26
148-70/3=26
26=26
Step-by-step explanation: