The amount of sample that is left after a certain period of time, given the half-life, h, can be calculated through the equation.
A(t) = A(o) (1/2)^(t/d)
where t is the certain period of time. Substituting the known values,
A(t) = (20 mg)(1/2)^(85.80/14.30)
Solving,
A(t) = 0.3125 mg
Hence, the answer is 0.3125 mg.
Potential energy is the energy stored. What do u think it is? (I don't really know)
Answer:
The answer to your question is letter B. 9
Explanation:
Unbalanced reaction
Al₂(SO₄)₃ + Ca(OH)₂ ⇒ Al(OH)₃ + CaSO₄
Reactants Elements Products
2 Al 1
3 S 1
14 O 7
1 Ca 1
2 H 3
Balanced reaction
Al₂(SO₄)₃ + 3Ca(OH)₂ ⇒ 2Al(OH)₃ + 3CaSO₄
Reactants Elements Products
2 Al 2
3 S 3
18 O 18
3 Ca 3
6 H 6
The sum of the coefficients is 1 + 3+ 2+ 3 = 9
Explanation:
attribute of a person that often cannot be measured directly but can be assessed using numbers of indicators or manifest variables