.86km is the correct answer
Answer:
The answer to your question is Molarity = 0.41
Explanation:
Data
mass of KNO₃ = 76.6 g
volume = 1.84 l
density = 1.05 g/ml
Process
1.- Calculate the molecular mass of KNO₃
molecular mass = 39 + 14 + (16 x 3) = 101 g
2.- Calculate the number of moles
101 g of KNO₃ --------------- 1 mol
76.6 g of KNO₃ ------------ x
x = (76.6 x 1) / 101
x = 0.76 moles
3.- Calculate molarity
Molarity = 
Substitution
Molarity = 
Result
Molarity = 0.41
ATP is synthesized in the mitochondria.
The mitochondria is known to be the powerhouse of a cell.
Hope it helped!
<u>Answer:</u> No crystals of potassium sulfate will be seen at 0°C for the given amount.
<u>Explanation:</u>
We are given:
Mass of potassium nitrate = 47.6 g
Mass of potassium sulfate = 8.4 g
Mass of water = 130. g
Solubility of potassium sulfate in water at 0°C = 7.4 g/100 g
This means that 7.4 grams of potassium sulfate is soluble in 100 grams of water
Applying unitary method:
In 100 grams of water, the amount of potassium sulfate dissolved is 7.4 grams
So, in 130 grams of water, the amount of potassium sulfate dissolved will be 
As, the soluble amount is greater than the given amount of potassium sulfate
This means that, all of potassium sulfate will be dissolved.
Hence, no crystals of potassium sulfate will be seen at 0°C for the given amount.
Answer: water could be used to wash it since the reaction has ended.
Explanation:
There will be no reaction of water with the Grignard reagent since the reaction has ended, as it is well known that water is a universal solvent for washing of glasswares after experiments but if it is during the reaction it will be more advisable to rinse with alcohol to enhance more accuracy during the experiment