Answer is:
Photosynthesis transforms light energy into chemical energy. Cellular respration releasses the carbon dioxide from food into the air.
hope this helps :)
The amount of power change if less work is done in more time"then the amount of power will decrease".
<u>Option: B</u>
<u>Explanation:</u>
The rate of performing any work or activity by transferring amount of energy per unit time is understood as power. The unit of power is watt
Here this equation showcase that power is directly proportional to the work but dependent upon time as time is inversely proportional to the power i.e as time increases power decreases and vice versa.
This can be understood from an instance, on moving a load up a flight of stairs, the similar amount of work is done, no matter how heavy but when the work is done in a shorter period of time more power is required.
The number of protons in an atom is known as the atomic number
Answer:
The magnitude of the force that each wire exerts on the other will increase by a factor of two.
Explanation:
force on parallel current carrying wire, F = BILsinθ
where;
B is the strength of the magnetic field
L is the length of the wire
I is the magnitude of current on the wire
θ is the angle of inclination of the wire
Assuming B, L and θ is constant, then F ∝ I
F = kI

When the amount of current is doubled in one of the wires, lets say the second wire;

Also, if will double the amount of current on the first wire, then
F₁ = 2F₂
Therefore, the magnitude of the force that each wire exerts on the other will increase by a factor of two.
Answer:
<h2> r=mv/Be</h2>
Explanation:
If a positive charge enters a magnetic field at 90 degrees the charge is deflected in a circular path by a force that acts perpendicular to it in line with Flemings right-hand rule
to derive the radius of the path of the charge we apply
F= mv^2/r=Bev
where
m= mass of the electronic charge
e=charge
B=magnetic field
v=average speed
r=radius
rearranging we have
r=mv^2/Bev
r=mv/Be