1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tresset [83]
3 years ago
8

Shayla was late for school. She ran the last half mile in 4 minutes. What was her average speed in miles per hour?

Physics
1 answer:
Shtirlitz [24]3 years ago
6 0

Answer:

7.5 miles per  hour

Explanation:

You might be interested in
Light travels in a straight line at a constant speed of 300 000 km/s what is the lights acceleration
exis [7]

Answer:

it's acceleration is 0

Explanation:

since it is travelling at a constant speed it is not accelerating so its acceleration is 0

3 0
3 years ago
What’s the kinetic energy of the roller coaster at the top and bottom of the hill? Use . A kiddie roller coaster car has a mass
serious [3.7K]
K.E1=1/2×100×3²
=50×9
=450J
K.E2=1/2×100×36
=50×36
=1800J
0 0
4 years ago
Read 2 more answers
The parachute on a drag racing car deploys at the end of a run. If the car has a mass of 820 kg and the car is moving 36 m/s, wh
Lelechka [254]

In order to determine the required force to stop the car, proceed as follow:

Calculate the deceleration of the car, by using the following formula:

v^2=v^2_o-2ax

where,

v: final speed = 0m/s (the car stops)

vo: initial speed = 36m/s

x: distance traveled = 980m

a: deceleration of the car= ?

Solve the equation above for a, replace the values of the other parameters and simplify:

\begin{gathered} a=\frac{v^2_o-v^2}{2x} \\ a=\frac{(36\frac{m}{s})^2-(0\frac{m}{s})^2}{2(980m)}=0.66\frac{m}{s^2} \end{gathered}

Next, consider that the formula for the force is:

F=ma

where,

m: mass of the car = 820 kg

a: deceleration of the car = 0.66m/s^2

Replace the previous values and simplify:

F=(820kg)(0.66\frac{m}{s^2})=542.20N

Hence, the required force to stop the car is 542.20N

4 0
1 year ago
A loaded 375 kg toboggan is traveling on smooth horizontal snow at 4.50 m/s when it suddenly comes to a rough region. The region
zmey [24]

Answer:

a) The average friction force exerted on the toboggan is 653.125 newtons, b) The rough region reduced the kinetic energy of the toboggan in 92.889 %, c) The speed of the toboggan is reduced in 73.333 %.

Explanation:

a) Given the existence of non-conservative forces (friction between toboggan and ground), the motion must be modelled by means of the Principle of Energy Conservation and the Work-Energy Theorem, since toboggan decrease its speed (associated with  due to the action of friction. Changes in gravitational potential energy can be neglected due to the inclination of the ground. Then:

K_{1} = K_{2} + W_{f}

Where:

K_{1}, K_{2} are the initial and final translational kinetic energies of the tobbogan, measured in joules.

W_{f} - Dissipated work due to friction, measured in joules.

By applying definitions of translation kinetic energy and work, the expression described above is now expanded and simplified:

f\cdot \Delta s = \frac{1}{2}\cdot m \cdot (v_{1}^{2}-v_{2}^{2})

Where:

f - Friction force, measured in newtons.

\Delta s - Distance travelled by the toboggan in the rough region, measured in meters.

m - Mass of the toboggan, measured in kilograms.

v_{1}, v_{2} - Initial and final speed of the toboggan, measured in meters per second.

The friction force is cleared:

f = \frac{m\cdot (v_{1}^{2}-v_{2}^{2})}{2\cdot \Delta s}

If m = 375\,kg, v_{1} = 4.50\,\frac{m}{s}, v_{2} = 1.20\,\frac{m}{s} and \Delta s = 5.40 \,m, then:

f = \frac{(375\,kg)\cdot \left[\left(4.50\,\frac{m}{s} \right)^{2}-\left(1.20\,\frac{m}{s}\right)^{2}\right]}{2\cdot (5.40\,m)}

f = 653.125\,N

The average friction force exerted on the toboggan is 653.125 newtons.

b) The percentage lost by the kinetic energy of the tobbogan due to friction is given by the following expression, which is expanded and simplified afterwards:

\% K_{loss} = \frac{K_{1}-K_{2}}{K_{1}}\times 100\,\%

\% K_{loss} = \left(1-\frac{K_{2}}{K_{1}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{\frac{1}{2}\cdot m \cdot v_{2}^{2}}{\frac{1}{2}\cdot m \cdot v_{1}^{2}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{v_{2}^{2}}{v_{1}^{2}} \right)\times 100\,\%

\%K_{loss} = \left[1-\left(\frac{v_{2}}{v_{1}}\right)^{2} \right]\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\%K_{loss} = \left[1-\left(\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} }\right)^{2} \right]\times 100\,\%

\%K_{loss} = 92.889\,\%

The rough region reduced the kinetic energy of the toboggan in 92.889 %.

c) The percentage lost by the speed of the tobbogan due to friction is given by the following expression:

\% v_{loss} = \frac{v_{1}-v_{2}}{v_{1}}\times 100\,\%

\% v_{loss} = \left(1-\frac{v_{2}}{v_{1}} \right)\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\% v_{loss} = \left(1-\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} } \right)\times 100\,\%

\%v_{loss} = 73.333\,\%

The speed of the toboggan is reduced in 73.333 %.

5 0
3 years ago
An object 1 of mass m1 is separated by some distance d from an object 2 of mass 2m1 . An object 3 of mass m3 is to be placed bet
Harrizon [31]

If the potential energy of the three-object system is to be a maximum (closest to zero), should object 3 be placed closer to object 1, closer to object 2, or halfway between them?

If the potential energy of the three-object system is to be a maximum (closest to zero), should object 3 be placed closer to object 1, closer to object 2, or halfway between them?

 

Object 3 should be placed closer to object 1.

 

Object 3 should be placed on a halfway between object 2 and object 1.

 

Object 3 should be placed closer to object 2.

 

Solution

I think that Object 3 should be placed closer to object 2.

6 0
3 years ago
Other questions:
  • What would be the best way for her to do this?
    7·1 answer
  • What is a sentence for absolute strength?
    8·1 answer
  • Why would the discovery of a fossil imply that earth is much older than originally though ?
    9·1 answer
  • soaring birds and glider pilots can remain aloft for hours without expending power. Discuss why this is so.
    12·1 answer
  • How many windows should the real tree house have
    14·1 answer
  • Lithium was one of the metals studied by the American physicist Robert Millikan in his research on the photoelectric effect. Whe
    8·1 answer
  • A car slows down uniformly from a speed of 21.0m/s to rest in 6.00s. How far did it travel in that time?
    5·1 answer
  • two point charges of 3.4 μc and 6.6 μc are 0.20 m apart. what is the electrical potential energy of the system?
    5·1 answer
  • What torque will increase angular velocity of a solid cylinder of mass 16 kg and diameter 1 m from zero to 120 rpm in 8 s?
    14·1 answer
  • A solution is prepared by dissolving 17.75 g sulfuric acid, h2so4, in enough water to make 100.0 ml of solution. if the density
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!