This problem is looking for the minimum value of μs that is
necessary to achieve the record time. To solve this problem:
Assuming the front wheels are off the ground for the entire
¼ mile = 402.3 m, the acceleration a = µs·9.8 m/s².
For a constant acceleration, distance = 402.3
m = 1/2at^2 = 804.6 m / (4.43 s)^2 = a = µs·9.8 m/s^2
µs = 804.6 m / (4.43s)^2 / 9.8 m/s^2 = 4.18
Answer: c) increases
Explanation:
Pressure increases with decreasing height
Answer:
The answer is B
Explanation:
Because when the both sides aren't balanced one side has to cause motion. (fall down)
The common #2 pencil is 7 1/2 long with a wooden shaft measuring about 6 3/4
Answer:
you must throw 3 snowballs
Explanation:
We can solve this exercise using the concepts of conservation of the moment, let's define the system as formed by the refrigerator and all the snowballs. Let's write the moment
Initial. Before bumping that refrigerator
p₀ = n m v₀
Where n is the snowball number
Final. When the refrigerator moves
pf = (n m + M) v
The moment is preserved because the forces during the crash are internal
n m v₀ = (n m + M) v
n m (v₀ - v) = M v
n = M/m v/(vo-v)
Let's look for the initial velocity of the balls, suppose the person throws them with the maximum force if it slides in the snow (F = 100N), let's use the second law and Newton
F = m a
a = F / m
The distance the ball travels from zero speed to maximum speed is the extension of the arm (x = 1 m), let's look kinematically for the speed of the balls when leaving the arm
v₁² = v₀² + 2 a x
v₁² = 0+ 2 (100/1) 1
v₁ = 14.14 m / s
This is the initial speed for the crash
v₀ = v = 14.14 m / s
Let's calculate
n = M/m v/ (v₀-v)
n = 10/1 3 / (14.14 -3)
n = 2.7 balls
you must throw 3 snowballs