It is overhead at the equator, it is because the sun ray’s
will be moving vertically as this will be directed at the equator. It is
because if it moves vertically, it will hit or overhead the equator and this
usually happens in spring and fall.
The trains take <u>57.4 s</u> to pass each other.
Two trains A and B move towards each other. Let A move along the positive x axis and B along the negative x axis.
therefore,
The relative velocity of the train A with respect to B is given by,
If the train B is assumed to be at rest, the train A would appear to move towards it with a speed of 170 km/h.
The trains are a distance d = 2.71 km apart.
Since speed is the distance traveled per unit time, the time taken by the trains to cross each other is given by,
Substitute 2.71 km for d and 170 km/h for
Express the time in seconds.
Thus, the trains cross each other in <u>57.4 s</u>.
Answer:
3.08 Nm
Explanation:
N = 200, diameter = 6 cm, radius = 3 cm, I = 7 A, B = 0.90 T, Angle = 30 degree
The angle made with the normal of the coil, theta = 90 - 30 = 60 degree
Torque = N I A B Sin Theta
Torque = 200 x 7 x 3.14 x 0.03 x 0.03 x 0.90 x Sin 60
Torque = 3.08 Nm
Answer:
∑Fy = 0, because there is no movement, N = m*g*cos (omega)
Explanation:
We can solve this problem with the help of a free body diagram where we show the respective forces in each one of the axes, y & x. The free-body diagram and the equations are in the image attached.
If the product of mass by acceleration is zero, we must clear the normal force of the equation obtained. The acceleration is equal to zero because there is no movement on the Y-axis.