Balanced equation: 2Na(s) + Cl₂(g) ---> 2NaCl(s)
when we have STP conditions, we can use this conversion: 1 mol = 22.4 L
first, we have to convert grams to molecules using the molar mass, and then use mole to mole ratio from the balanced equation.
molar mass of Na= 23.0 g/mol
ratio: 2 mol Na= 1 mol Cl₂ (based on coefficients of balanced equation)
calculations:
The answer is surface tension
L

mol/dm³ is measure for molarity
The number of moles in 3.20 x 10² formula units of calcium iodide is 0.053 moles.
<h3>How to calculate number of moles?</h3>
The number of moles in the formula units of a substance is calculated by dividing the formula unit by Avogadro's number.
According to this question, 3.20 x 10² formula units are in calcium iodide. The number of moles is as follows:
no of moles = 3.20 x 10²² ÷ 6.02 × 10²³
no of moles = 0.53 × 10-¹
no of moles = 0.053 moles
Therefore, the number of moles in 3.20 x 10² formula units of calcium iodide is 0.053 moles.
Learn more about number of moles at: brainly.com/question/12513822
#SPJ6
The balanced chemical reaction is:
<span>2H2O= 2H2 + O2
</span>
We are given the amount of oxygen to be produced in the reaction. The starting point for the calculations will be this amount.
50 g ( 1 mol O2 / 32 g O2 ) ( 2 mol H2O / 1 mol O2 ) ( 18.01 g H2O / 1 mol H2O) = 56.28 g of H2O is needed.
Therefore, the correct answer is the last option.