Answer:
129900
Explanation:
Given that
Mass of the particle, m = 1 g = 1*10^-3 kg
Speed of the particle, u = ½c
Speed of light, c = 3*10^8
To solve this, we will use the formula
p = ymu, where
y = √[1 - (u²/c²)]
Let's solve for y, first. We have
y = √[1 - (1.5*10^8²/3*10^8²)]
y = √(1 - ½²)
y = √(1 - ¼)
y = √0.75
y = 0.8660, using our newly gotten y, we use it to solve the final equation
p = ymu
p = 0.866 * 1*10^-3 * 1.5*10^8
p = 129900 kgm/s
thus, we have found that the momentum of the particle is 129900 kgm/s
Answer:
a = 1.764m/s^2
Explanation:
By Newton's second law, the net force is F = ma.
The equation for friction is F(k) = F(n) * μ.
In this case, the normal force is simply F(n) = mg due to no other external forces being specified
F(n) = mg = 15kg * 9.8 m/s^2 = 147N.
F(k) = F(n) * μ = 147N * 0.18 = 26.46N.
Assuming the object is on a horizontal surface, the force due to gravity and the normal force will cancel each other out, leaving our net force as only the frictional one.
Thus, F(net) = F(k) = ma
26.46N = 15kg * a
a = 1.764m/s^2
Explanation:
current = velocity/resistance
I = V/R
15/4
current = 3.75A
hope this helps...
Answer : The excess of electrons on the penny are,
electrons
Solution : Given,
Total charge = 
Charge on electron = 
Formula used :

Now put all the given values in this formula, we get the excess of electrons present on the penny.

Therefore, the excess of electrons on the penny are,
electrons
Answer:
Explanation:
Small grains are negatively charged by the wind while big grains is positively charged and remains at the ground . This process creates an electric field due to the presence of oppositely charged particles.
When ever electric field exists it is directed from a positive charge to a negative charge so the here electric field is towards an upwards direction.