Answer:
Both of them reach the lake at the same time.
Explanation:
We have equation of motion s = ut + 0.5at²
Vertical motion of James : -
Initial velocity, u = 0 m/s
Acceleration, a = g
Displacement, s = h
Substituting,
s = ut + 0.5 at²
h = 0 x t + 0.5 x g x t²
![t_{James}=\sqrt{\frac{2h}{g}}](https://tex.z-dn.net/?f=t_%7BJames%7D%3D%5Csqrt%7B%5Cfrac%7B2h%7D%7Bg%7D%7D)
Vertical motion of John : -
Initial velocity, u = 0 m/s
Acceleration, a = g
Displacement, s = h
Substituting,
s = ut + 0.5 at²
h = 0 x t + 0.5 x g x t²
![t_{John}=\sqrt{\frac{2h}{g}}](https://tex.z-dn.net/?f=t_%7BJohn%7D%3D%5Csqrt%7B%5Cfrac%7B2h%7D%7Bg%7D%7D)
So both times are same.
Both of them reach the lake at the same time.
- Some people view bacteria specimens with a 100x objective lens in order to see the smallest details.
- Others may use a 10x objective lens for more general purposes, such as examining stained slides or pictures.
- And still others may use a 40x objective lens to gain maximum resolution when viewing images of thick samples.
It is important to choose the appropriate magnification for your needs so that you can properly examine the specimen under study.
<h3>Why is the 100x objective lens necessary to see bacteria?</h3>
- Bacteria must, of course, be viewed at the maximum magnification and resolution possible because to their small size.
- Due to optical restrictions, this is approximately 1000x in a light microscope.
- To improve resolution, the oil immersion method is performed. This calls for a unique 100x objective.
To learn more about bacterial specimen, visit:
brainly.com/question/1412064
#SPJ4
Answer:
the interference of two or more waves of equal frequency and phase, resulting in their mutual reinforcement and producing a single amplitude equal to the sum of the amplitudes of the individual waves.
Answer and Explanation:
with reference to Einstein's theory of special relativity, the speed of an electromagnetic radiation, here, laser will not change in any inertial frame or remains same irrespective of any change in inertial frame.
Therefore, the speed of light measured in both the cases, i.e., in astronaut's reference frame and spaceship's reference frame will be equal to the speed of light in vacuum, i.e.,
.
The laser gun's speed in astronaut's reference frame is the same as the speed of the spaceship as it mounted on it, i.e., the speed of the laser gun is 200 million m/s.
The laser gun's speed measured in spaceship's reference frame will be zero, as it is mounted on the spaceship and is stationary in the spaceship's reference frame.