Hello there,
It takes 300 newtons of force and a distance of 20 meters for a moving cart to come to a stop. How much kinetic energy did this cart have?
Answer: 6000
Answer:
1. True WA > WB > WC
Explanation:
In this exercise they give work for several different configurations and ask that we show the relationship between them, the best way to do this is to calculate each work separately.
A) Work is the product of force by distance and the cosine of the angle between them
WA = W h cos 0
WA = mg h
B) On a ramp without rubbing
Sin30 = h / L
L = h / sin 30
WB = F d cos θ
WB = F L cos 30
WB = mf (h / sin30) cos 30
WB = mg h ctan 30
C) Ramp with rubbing
W sin 30 - fr = ma
N- Wcos30 = 0
W sin 30 - μ W cos 30 = ma
F = W (sin30 - μ cos30)
WC = mg (sin30 - μ cos30) h / sin30
Wc = mg (1 - μ ctan30) h
When we review the affirmation it is the work where there is rubbing is the smallest and the work where it comes in free fall at the maximum
Let's review the claims
1. True The work of gravity is the greatest and the work where there is friction is the least
2 False. The job where there is friction is the least
3 False work with rubbing is the least
4 False work with rubbing is the least
Answer:
Approximately
(assuming that external forces on the cannon are negligible.)
Explanation:
If an object of mass
is moving at a velocity of
, the momentum
of that object would be
.
Momentum of the t-shirt:
.
If there is no external force (gravity, friction, etc.) on this cannon, the total momentum of this system should be conserved. In other words, if
denote the momentum of this cannon:
.
.
Rewrite
to obtain
. Since the mass of this cannon is
, the velocity of this cannon would be:
.
Empirical formula of compound is XF3
Compound consist of 65% F
In 100g of compound there is 65 g of F
= 65 / 19 moles of Fluorine = 3.421 moles
So moles of X = 3.421 / 3 = 1.140 moles
And in 100 g X
consist of 35 g
So the molar mass of X = 35 / 1.140 = 30.71 g = 31
approximately
And it is the mass of phosphorus
So the empirical formula for the compound is PX3