The prefix your looking for is centi as in centimeter. I got this answer on google.
So please mark me as Brainiest.
Because the information cant be out of the investigation
Answer:
The thrown rock strike 2.42 seconds earlier.
Explanation:
This is an uniformly accelerated motion problem, so in order to find the arrival time we will use the following formula:

So now we have an equation and unkown value.
for the thrown rock

for the dropped rock

solving both equation with the quadratic formula:

we have:
the thrown rock arrives on t=5.4 sec
the dropped rock arrives on t=7.82 sec
so the thrown rock arrives 2.42 seconds earlier (7.82-5.4=2.42)
Explanation:
The criteria for decision making would be
1. I would fund for the school of young diabetics, for the sole purpose of them leaning and being motivated for a healthy lifestyle.
2. I would also fund for new and improved insulin pumps as old ones cause multiple problems.
Given Information:
Pendulum 1 mass = m₁ = 0.2 kg
Pendulum 2 mass = m₂ = 0.6 kg
Pendulum 1 length = L₁ = 5 m
Pendulum 2 length = L₂ = 1 m
Required Information:
Affect of mass on the frequency of the pendulum = ?
Answer:
The mass of the ball will not affect the frequency of the pendulum.
Explanation:
The relation between period and frequency of pendulum is given by
f = 1/T
The period of pendulum is given by
T = 2π√(L/g)
Where g is the acceleration due to gravity and L is the length of the string
As you can see the period (and frequency too) of pendulum is independent of the mass of the pendulum. Therefore, the mass of the ball will not affect the frequency of the pendulum.
Bonus:
Pendulum 1:
T₁ = 2π√(L₁/g)
T₁ = 2π√(5/9.8)
T₁ = 4.49 s
f₁ = 1/T₁
f₁ = 1/4.49
f₁ = 0.22 Hz
Pendulum 2:
T₂ = 2π√(L₂/g)
T₂ = 2π√(1/9.8)
T₂ = 2.0 s
f₂ = 1/T₂
f₂ = 1/2.0
f₂ = 0.5 Hz
So we can conclude that the higher length of the string increases the period of the pendulum and decreases the frequency of the pendulum.