Answer:
Explanation:
In Pre-AP Chemistry, the development of models to explain their macroscopic observations is a primary means through which students develop an understanding of the molecular world.
You will be forced to think and apply concepts to new situations, and even derive your own theories from application. This is excellent preparation for the higher levels of thinking required in college.
Chemistry, the science that deals with the properties, composition, and structure of substances (defined as elements and compounds), the transformations they undergo, and the energy that is released or absorbed during these processes.
The answer would be A.Bias because the scientist can form a Bias opinion based on his beliefs
Answer : The correct expression will be:

Explanation :
The chemical reactions are :
(1)

(2)

The final chemical reaction is :

Now we have to calculate the value of
for the final reaction.
Now equation 1 is multiply by 2 and then add both the reaction we get the value of 'K'.
If the equation is multiplied by a factor of '2', the equilibrium constant will be the square of the equilibrium constant of initial reaction.
If the two equations are added then equilibrium constant will be multiplied.
Thus, the value of 'K' will be:

I think the correct answer is C
<u>0.219 moles </u><u>moles are present in the flask when the </u><u>pressure </u><u>is 1.10 atm and the temperature is 33˚c.</u>
What is ideal gas constant ?
- The ideal gas constant is calculated to be 8.314J/K⋅ mol when the pressure is in kPa.
- The ideal gas law is a single equation which relates the pressure, volume, temperature, and number of moles of an ideal gas.
- The combined gas law relates pressure, volume, and temperature of a gas.
We simple use this formula-
The basic formula is PV = nRT where. P = Pressure in atmospheres (atm) V = Volume in Liters (L) n = of moles (mol) R = the Ideal Gas Law Constant.
68F = 298.15K
V = nRT/P = 0.2 * 0.08206 * 298.15K / (745/760) = 4.992Liters
n = PV/RT = 1.1atm*4.992L/(0.08206Latm/molK * 306K)
n = 0.219 moles
Therefore, 0.219 moles moles are present in the flask when the pressure is 1.10 atm and the temperature is 33˚c.
Learn more about ideal gas constant
brainly.com/question/3961783
#SPJ4