1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
coldgirl [10]
2 years ago
7

The volume of a sphere is 81 cubic centimeters. Which equation can be used to solve for the radius of the sphere?

Mathematics
1 answer:
sashaice [31]2 years ago
5 0

Answer:

81π=4/3πr^3. Hope this helps

You might be interested in
What is the volume of this square pyramid?
tatuchka [14]

Answer: 1296 cm³

Step-by-step explanation:

Since, the volume of a square pyramid is,

V = \frac{a^2h}{3}

Where a = side of the square base,

h = height of the pyramid,

By the given diagram,

a = 18 cm,

h = 12 cm,

Hence, the volume of the given pyramid,

V = \frac{18^2\times 12}{3}

= \frac{324\times 12}{3}

=\frac{3888}{3}

=1296 cube cm.

⇒ First option is correct.

5 0
3 years ago
The high temperature was recorded as 25.6°F. The low temperature that same day was recorded as −2.7°F. What was the difference b
VMariaS [17]

28.3

Step-by-step explanation:

the difference is the answer to a subtraction problem so we can plug in our numbers like this

25.6-(-2.7) which equals 28.3

a good thing to remember when subtracting negative numbers is that a positive and negative won't always make a negative like in this example

4 0
2 years ago
What is the value of A when we rewrite... (PLZ HELP QUICK)
Marina86 [1]

Answer:

<h2>\frac{133}{8}</h2>

Step-by-step explanation:

Given,

{( \frac{5}{2} )}^{x}  +  {( \frac{5}{2} )}^{x + 3}

=  {( \frac{5}{2}) }^{x}  +  {( \frac{5}{2}) }^{x}  \times  {( \frac{5}{2} )}^{3}

= ( \frac{5}{2} ) ^{x} (1 +  {( \frac{5}{2} )}^{3}

=  {( \frac{5}{2} )}^{x} (1 +  \frac{125}{8} )

=  {( \frac{5}{2} )}^{x} ( \frac{1 \times 8 + 125}{8} )

=  {( \frac{5}{2}) }^{x} ( \frac{8 + 125}{8} )

{( \frac{5}{2} )}^{x} ( \frac{133}{8} )

Comparing with A • {( \frac{5}{2}) }^{x}

A = \frac{133}{8}

Hope this helps...

Good luck on your assignment...

7 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%2By%3D1%7D%20%5Catop%20%7Bx-2y%3D4%7D%7D%20%5Cright.%20%5C%5C%5Clef
brilliants [131]

Answer:

<em>(a) x=2, y=-1</em>

<em>(b)  x=2, y=2</em>

<em>(c)</em> \displaystyle x=\frac{5}{2}, y=\frac{5}{4}

<em>(d) x=-2, y=-7</em>

Step-by-step explanation:

<u>Cramer's Rule</u>

It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.

It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:

\displaystyle \left \{ {{ax+by=p} \atop {cx+dy=q}} \right.

We call the determinant of the system

\Delta=\begin{vmatrix}a &b \\c  &d \end{vmatrix}

We also define:

\Delta_x=\begin{vmatrix}p &b \\q  &d \end{vmatrix}

And

\Delta_y=\begin{vmatrix}a &p \\c  &q \end{vmatrix}

The solution for x and y is

\displaystyle x=\frac{\Delta_x}{\Delta}

\displaystyle y=\frac{\Delta_y}{\Delta}

(a) The system to solve is

\displaystyle \left \{ {{x+y=1} \atop {x-2y=4}} \right.

Calculating:

\Delta=\begin{vmatrix}1 &1 \\1  &-2 \end{vmatrix}=-2-1=-3

\Delta_x=\begin{vmatrix}1 &1 \\4  &-2 \end{vmatrix}=-2-4=-6

\Delta_y=\begin{vmatrix}1 &1 \\1  &4 \end{vmatrix}=4-3=3

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{3}{-3}=-1

The solution is x=2, y=-1

(b) The system to solve is

\displaystyle \left \{ {{4x-y=6} \atop {x-y=0}} \right.

Calculating:

\Delta=\begin{vmatrix}4 &-1 \\1  &-1 \end{vmatrix}=-4+1=-3

\Delta_x=\begin{vmatrix}6 &-1 \\0  &-1 \end{vmatrix}=-6-0=-6

\Delta_y=\begin{vmatrix}4 &6 \\1  &0 \end{vmatrix}=0-6=-6

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-6}{-3}=2

The solution is x=2, y=2

(c) The system to solve is

\displaystyle \left \{ {{-x+2y=0} \atop {x+2y=5}} \right.

Calculating:

\Delta=\begin{vmatrix}-1 &2 \\1  &2 \end{vmatrix}=-2-2=-4

\Delta_x=\begin{vmatrix}0 &2 \\5  &2 \end{vmatrix}=0-10=-10

\Delta_y=\begin{vmatrix}-1 &0 \\1  &5 \end{vmatrix}=-5-0=-5

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-10}{-4}=\frac{5}{2}

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-5}{-4}=\frac{5}{4}

The solution is

\displaystyle x=\frac{5}{2}, y=\frac{5}{4}

(d) The system to solve is

\displaystyle \left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

Calculating:

\Delta=\begin{vmatrix}6 &-1 \\4  &-2 \end{vmatrix}=-12+4=-8

\Delta_x=\begin{vmatrix}-5 &-1 \\6  &-2 \end{vmatrix}=10+6=16

\Delta_y=\begin{vmatrix}6 &-5 \\4  &6 \end{vmatrix}=36+20=56

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{16}{-8}=-2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{56}{-8}=-7

The solution is x=-2, y=-7

4 0
3 years ago
a rectangular prism and its dimensions are shown in the drawing .What us the total surface area of the rectangular prism in Squa
Xelga [282]

Answer:

Superficie de un prisma rectangular fórmula

Área de un prisma rectangular = 2la + 2ah + 2lh.

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • How do you find the midpoint M?
    8·2 answers
  • I need help with questions #5 and #6
    15·1 answer
  • At top speed, a rabbit can cover 4 miles in 11 minutes. If a
    12·1 answer
  • Round 25.789 to the nearest tenth
    10·2 answers
  • Bryce intended to swim directly across a stream that is 99 meters wide. But the current caused him to arrive at the opposite sho
    12·1 answer
  • Unit 8: Right Triangles &amp; Trigonometry Homework 3
    8·1 answer
  • If ∠4 = 98°, then ∠3 = ?<br> look at image
    12·2 answers
  • -<br>(23)<br>x +. 8<br>1 - 2x = 8 + x<br>5<br>3<br>-<br>5x - 1<br>24​
    15·1 answer
  • You have a bag that contains 6 red marbles and 3 blue marbles. You randomly choose one of the marbles. Without replacing the fir
    5·1 answer
  • What number is 2/10 of 20
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!