Answer:
Concentration: 0.185M HX
Ka = 9.836x10⁻⁶
pKa = 5.01
Explanation:
A weak acid, HX, reacts with NaOH as follows:
HX + NaOH → NaX + H2O
<em>Where 1 mole of HX reacts with 1 mole of NaOH</em>
To solve this question we need to find the moles of NaOH at equivalence point (Were moles HX = Moles NaOH).
18.50mL = 0.01850L * (0.20mol / L) = 0.00370 moles NaOH = Moles HX
In 20.0mL = 0.0200L =
0.00370 moles HX / 0.0200L = 0.185M HX
The equilibrium of HX is:
HX(aq) ⇄ H⁺(aq) + X⁻(aq)
And Ka is defined as:
Ka = [H⁺] [X⁻] / [HX]
<em>Where [H⁺] = [X⁻] because comes from the same equilibrium</em>
As pH = 2.87, [H+] = 10^-pH = 1.349x10⁻³M
Replacing:
Ka = [H⁺] [H⁺] / [HX]
Ka = [1.349x10⁻³M]² / [0.185M]
Ka = 9.836x10⁻⁶
pKa = -log Ka
<h3>pKa = 5.01</h3>
Answer : Broadly solids are divided into three categories;
i) Crystalline solids have a regular definite structure, in which the particles pack in a repeating pattern from one edge of the solid to the other.
ii) Amorphous solids have a random structure, with little unorganized pattern long-range order.
iii) Polycrystalline solids are those where an aggregate which consists of a large number of small crystals or grains in which the structure is regular, but the crystals or grains are found to be arranged in a random fashion.
Also solids can be divided into 3 more categories according to their bonds;
i) Covalent solids, like diamond, which forms crystals that can be viewed as a single giant molecule made up of an almost endless number of covalent bonds.
ii) Ionic solids are basically salts, such as NaCl, in which the molecules are held together by the strong force of attraction between ions of opposite charge.
iii) Metallic solids are found in metals which have the force of attraction between atoms of metals, such as copper and aluminum, or alloys, such as brass and bronze, are metallic bonds.
When utilizing the gravimetric method, it is crucial to completely dissolve your sample in 10 mL of water. A quantitative technique called gravimetric analysis employs the selective precipitation of the component under study from an aqueous solution.
A group of techniques known as gravimetric analysis are employed in analytical chemistry to quantify an analyte based on its mass. Gravimetric analysis is a quantitative chemical analysis technique that transforms the desired ingredient into a substance (of known composition) that can be extracted from the sample and weighed. This is a crucial point to remember.
Gravimetric water content (g) is therefore defined as the mass of water per mass of dry soil. To calculate it, weigh a sample of wet soil, dry it to remove the water, and then weigh the dried soil (mdry). Dimensions of the sample Water is commonly forgotten despite having a density close to one.
To know more about gravimetry, please refer:
brainly.com/question/18992495
#SPJ4
4. Static, sliding,rolling,and fluid friction