As the temperature increases, the solubility of the solute in the liquid also increases. This is due to the fact that the increase in energy allows the liquid to more effectively break up the solute. The additoin of energy also shifts the equilibrium of the reation to the right since it takes energy to dissolve most things and you are adding more of it (this is explained with Le Chatlier principles).
I hope this helps and also I assumed that your question involved the solubility of an ionic substance in a solvent like water. If that was not your question feel free to say so in the comments so that I can answer your actually question.
This question is asking for a method for the determination of the freezing point in a solution that does not have a noticeable transition in the cooling curve, which is basically based on a linear fit method.
The first step, would be to understand that when the transition is well-defined as the one on the attached file, we can just identify the temperature by just reading the value on the graph, at the time the slope has a pronounced change. For instance, on the attached, the transition occurs after about 43 seconds and the freezing point will be about 4 °C.
However, when we cannot identify a pronounced change in the slope, it will be necessary to use a linear fit method (such as minimum squares) to figure out the equation for each segmented line having a significantly different slope and then equal them so that we can numerically solve for the intercept.
As an example, imagine two of the segmented lines have the following equations after applying the linear fit method:

First of all, we equal them to find the x-value, in this case the time at which the freezing point takes place:

Next, we plug it in in any of the trendlines to obtain the freezing point as the y-value:

This means the freezing point takes place after 7.72 second of cooling and is about 1.84 °C. Now you can replicate it for any not well-defined cooling curve.
Learn more:
Answer:
4.8x10⁻³ Liters are required
Explanation:
Molarity is an unit of concentration in chemistry defined as the ratio between moles of solute (In this case, silver nitrate) and liters of solution.
The 0.50M solution contains 0.50 moles of silver nitrate per liter of solution.
To provide 2.4x10⁻³ moles Silver nitrate are required:
2.4x10⁻³ moles * (1L / 0.50 moles) =
<h3>4.8x10⁻³ Liters are required</h3>
Answer:
<h3>KBr + I- ---------> KI + Br-</h3>
Explanation:
Single Displacement reaction is a chemical Reaction in which one element in the salt is replaced with another element
for example,
A-B + C -------> A-C + B
electropositive replaces only electropositive elements from compound. same is true for electronegative element
in first reaction I being electro negative replaces Br from KBr so this is a single displacement reaction
Answer:
1.32*10^23 molecules
Explanation:
sucrose formula: C12H22O11
molar mass: 12(12.01)+22(1.01)+11(16.00)=342.34g/mol
75.0 g C12H22O11 * (1 mol C12H22O11)/(342.34g C12H22O11)=0.219 mol C12H22O11
0.219 mol * (6.022*10^23)/mol = 1.32*10^23 molecules (three sig. figures)