Answer:
Part a)

part b)

Part c)

Part d)
here since wave is moving in negative direction so the sign of
must be positive
Explanation:
As we know that the speed of wave in string is given by

so we have


now we have


now we have
Part a)
= amplitude of wave

part b)

here we know that


so we have


Part c)

Part d)
here since wave is moving in negative direction so the sign of
must be positive
An electric engine turning a workshop sanding rotation at 1.00 × 10² rev/min is switched off. Take the wheel includes a regular negative angular acceleration of volume 2.00 rad/s². 5.25 moments long it takes the grinding rotation to control.
<h3>What is negative angular acceleration?</h3>
- A particle that has a negative angular velocity rotates counterclockwise.
- Negative angular acceleration () is a "push" that is hence counterclockwise.
- The body will speed up or slow down depending on whether and have the same sign (and eventually go in reverse).
- For instance, when an object rotating counterclockwise slows down, acceleration would be negative.
- If a rotating body's angular speed is seen to grow in a clockwise direction and decrease in a counterclockwise direction, it is given a negative sign.
- It is known that a change in the linear acceleration correlates to a change in the linear velocity.
Let t be the time taken to stop.
ω = 0 rad/s
Use the first equation of motion for rotational motion
ω = ωo + α t
0 = 10.5 - 2 x t
t = 5.25 second
To learn more about angular acceleration, refer to:
brainly.com/question/21278452
#SPJ4
Answer:
C. it will not change.
Explanation:
While combing, the rubbing of the comb with the hair, transfer of electron takes place from the hair to the comb and the comb becomes negatively charged. But, this transfer of electron does not make any considerable change in the mass of the hair. This is because the mass of an electron is highly negligible. Now, neglecting the mass of an electron, the transfer of the electrons from the hair to the comb makes charging of the comb, but no loss of mass in the hair. So, the mass of hair will no change.