Answer:
The kinetic energy of the particle as it moves through point B is 7.9 J.
Explanation:
The kinetic energy of the particle is:
<u>Where</u>:
K: is the kinetic energy
: is the potential energy
q: is the particle's charge = 0.8 mC
ΔV: is the electric potential = 1.5 kV
Now, the kinetic energy of the particle as it moves through point B is:


Therefore, the kinetic energy of the particle as it moves through point B is 7.9 J.
I hope it helps you!
Answer:
Explanation:
Since the wires attract each other , the direction of current will be same in both the wires .
Let I be current in wire which is along x - axis
force of attraction per unit length between the two current carrying wire is given by
x 
where I₁ and I₂ are currents in the wires and d is distance between the two
Putting the given values
285 x 10⁻⁶ = 10⁻⁷ x 
I₂ = 16.76 A
Current in the wire along x axis is 16.76 A
To find point where magnetic field is zero due the these wires
The point will lie between the two wires as current is in the same direction.
Let at y = y , the neutral point lies
k 2 x
= k 2 x 
25.5y = 16.76 x .3 - 16.76y
42.26 y = 5.028
y = .119
= .12 m
Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,

- Charge on the second charged particle,

- Position of the first charge =

- Position of the second charge =

The electric field at a point due to a charge
at a point
distance away is given by

where,
= Coulomb's constant, having value 
= position vector of the point where the electric field is to be found with respect to the position of the charge
.
= unit vector along
.
The electric field at the origin due to first charge is given by

is the position vector of the origin with respect to the position of the first charge.
Assuming,
are the units vectors along x and y axes respectively.

Using these values,

The electric field at the origin due to the second charge is given by

is the position vector of the origin with respect to the position of the second charge.

Using these values,

The net electric field at the origin due to both the charges is given by

Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.