The age of Blain is 23 years old
<h3><u>Solution:</u></h3>
Let the age of Blain be "a" and age of Jillian be "b"
Given that Blain is two years older than three times Jillians age
So we can frame a equation as:
age of blain = 2 + 3(age of Jillian)
a = 2 + 3b ----- eqn 1
Also given that Jillian is also 16 years younger than Blain
Age of Jillain = Age of Blain - 16
b = a - 16 ---- eqn 2
Substitute eqn 2 in eqn 1
a = 2 + 3(a - 16)
a = 2 + 3a - 48
a - 3a = -46
-2a = -46
a = 23
Thus the age of Blain is 23 years old
Answer:
Step-by-step explanation:
STEP 1:
2/3 + 7/10 = ?
The fractions have unlike denominators. First, find the Least Common Denominator and rewrite the fractions with the common denominator.
LCD(2/3, 7/10) = 30
Multiply both the numerator and denominator of each fraction by the number that makes its denominator equal the LCD. This is basically multiplying each fraction by 1.
* + = ?
Complete the multiplication and the equation becomes
The two fractions now have like denominators so you can add the numerators.
Then:
This fraction cannot be reduced.
The fraction 41/30
is the same as
41 divided by 30
Convert to a mixed number using
long division for 41 ÷ 30 = 1R11, so
41/30 = 1 11/30
Therefore:
2/3+7/10= 1 11/30
STEP 2:
41/30 + -2/3
The fractions have unlike denominators. First, find the Least Common Denominator and rewrite the fractions with the common denominator.
LCD(41/30, -2/3) = 30
Multiply both the numerator and denominator of each fraction by the number that makes its denominator equal the LCD. This is basically multiplying each fraction by 1.
The two fractions now have like denominators so you can add the numerators.
Then:
This fraction can be reduced by dividing both the numerator and denominator by the Greatest Common Factor of 21 and 30 using
GCF(21,30) = 3
Therefore:
|
Answer: B.$1.25
Step-by-step explanation: 10 divided by 1.25= 8 pounds
90 is the LCM of 30 and 45