Answer:
the first one is Primary
the second one I think it's Mature but I don't know
Complete question :
NASA is concerned about the ability of a future lunar outpost to store the supplies necessary to support the astronauts the supply storage area of the lunar outpost where gravity is 1.63m/s/s can only support 1 x 10 over 5 N. What is the maximum WEIGHT of supplies, as measured on EARTH, NASA should plan on sending to the lunar outpost?
Answer:
601000 N
Explanation:
Given that :
Acceleration due to gravity at lunar outpost = 1.6m/s²
Supported Weight of supplies = 1 * 10^5 N
Acceleration due to gravity on the earth surface = 9.8m/s²
Maximum weight of supplies as measured on EARTH :
Ratio of earth gravity to lunar post gravity:
(Earth gravity / Lunar post gravity) ;
(9.8 / 1.63) = 6.01
Hence, maximum weight of supplies as measured on EARTH should be :
6.01 * (1 × 10^5)
6.01 × 10^5
= 601000 N
Explanation:
It is given that,
Spring constant of the spring, k = 15 N/m
Amplitude of the oscillation, A = 7.5 cm = 0.075 m
Number of oscillations, N = 31
Time, t = 15 s
(a) Let m is the mass of the ball. The frequency of oscillation of the spring is given by :

Total number of oscillation per unit time is called frequency of oscillation. Here, 


m = 0.0895 kg
or
m = 89 g
(b) The maximum speed of the ball that is given by :





Hence, this is the required solution.
Answer:Both are correct
Explanation:
Both are correct because
Mechanical efficiency is the dimensionless term which is the ratio of brake horsepower to the Indicated horse Power
Where brake power is the Power obtained at the crankshaft and
Indicated horsepower is the power obtained in the combustion chamber and this power is the loss in the form of friction.
Volumetric efficiency is the ratio of actual fuel intake to the maximum air fuel that could be taken.
Answer:1.5
Explanation:
Given
mass of first cart 
initial Velocity 
mass of second cart 

In the absence of External Force we can conserve momentum




Final kinetic Energy of two masses



Initial Kinetic Energy



