Answer:
distance is 13 m for 100 dB
distance is 409 km for 10 dB
Explanation:
Given data
distance r = 2.30 m
source β = 115 dB
to find out
distance at sound level 100 dB and 10 dB
solution
first we calculate here power and intensity and with this power and intensity we will find distance
we know sound level β = 10 log(I/
) ......................a
put here value (I/
) = 10^−12 W/m² and β = 115
115 = 10 log(I/10^−12)
so
I = 0.316228 W/m²
and we know power = intensity × 4π r² ...............b
power = 0.316228 × 4π (2.30)²
power = 21.021604 W
we know at 100 dB intensity is 0.01 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 0.01 × 4π r²
so by solving r
r = 12.933855 m = 13 m
distance is 13 m
and
at 10 dB intensity is 1 × 10^–11 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 1 × 10^–11 × 4π r²
by solving r we get
r = 409004.412465 m = 409 km
The alpha particle is emitted at 4235 m/s
Explanation:
We can use the law of conservation of momentum to solve the problem: the total momentum of the original nucleus must be equal to the total momentum after the alpha particle has been emitted. Therefore:
where:
is the mass of the original nucleus
is the initial velocity of the nucleus
is the mass of the alpha particle
is the final velocity of the alpha particle
is the mass of the daughter nucleus
is the final velocity of the nucleus
Solving for
, we find the final velocity of the alpha particle:

Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer:
The strength of the magnetic field that the line produces is
.
Explanation:
From Biot-Savart law, the equation to determine the strength of the magnetic field for any straight wire can be deduced:
(1)
Where
is the permiability constant, I is the current and r is the distance from the wire.
Notice that it is necessary to express the current, I, from kiloampere to ampere.
⇒ 
Finally, equation 1 can be used:
Hence, the strength of the magnetic field that the line produces is
.
Answer:
B=0.2T
Explanation:
given required solution
l=4m B=? <em>F</em><em>=</em><em>BIL</em>
i=0.5A B=F/IL
F=0.4N B=0.4N/0.5A*4m
B=0.4/2=0.2T