1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
densk [106]
3 years ago
11

Given vectors D (3.00 m, 315 degrees wrt x-axis) and E (4.50 m, 53.0 degrees wrt x-axis), find the resultant R= D + E. (a) Write

R in vector form. (b) Write R showing the magnitude and direction in degrees.
Physics
1 answer:
Eva8 [605]3 years ago
3 0

Answer:

  • R = ( 4.831 m , 1.469 m )
  • Magnitude of R = 5.049 m
  • Direction of R relative to the x axis= 16°54'33'

Explanation:

Knowing the magnitude and directions relative to the x axis, we can find the Cartesian representation of the vectors using the formula

\vec{A}= | \vec{A} | \ ( \ cos(\theta) \ , \ sin (\theta) \ )

where | \vec{A} | its the magnitude and θ.

So, for our vectors, we will have:

\vec{D}= 3.00 m \ ( \ cos(315) \ , \ sin (315) \ )

\vec{D}=  ( 2.121 m , -2.121 m )

and

\vec{E}= 4.50 m \ ( \ cos(53.0) \ , \ sin (53.0) \ )

\vec{E}= ( 2.71 m , 3.59 m )

Now, we can take the sum of the vectors

\vec{R} = \vec{D} + \vec{E}

\vec{R} = ( 2.121 \ m , -2.121 \ m ) + ( 2.71 \ m , 3.59 \ m )

\vec{R} = ( 2.121 \ m  + 2.71 \ m , -2.121 \ m + 3.59 \ m )

\vec{R} = ( 4.831 \ m , 1.469 \ m )

This is R in Cartesian representation, now, to find the magnitude we can use the Pythagorean theorem

|\vec{R}| = \sqrt{R_x^2 + R_y^2}

|\vec{R}| = \sqrt{(4.831 m)^2 + (1.469 m)^2}

|\vec{R}| = \sqrt{23.338 m^2 + 2.158 m^2}

|\vec{R}| = \sqrt{25.496 m^2}

|\vec{R}| = 5.049 m

To find the direction, we can use

\theta = arctan(\frac{R_y}{R_x})

\theta = arctan(\frac{1.469 \ m}{4.831 \ m})

\theta = arctan(0.304)

\theta = 16\°54'33''

As we are in the first quadrant, this is relative to the x axis.

You might be interested in
The sound level at a distance of 2.30 m from a source is 115 dB. At what distance will the sound level have the following values
Aleksandr [31]

Answer:

distance is 13 m for 100 dB

distance is 409 km for 10 dB

Explanation:

Given data

distance r = 2.30 m

source β = 115 dB

to find out

distance at sound level 100 dB and 10 dB

solution

first we calculate here power and intensity and with this power and intensity we will find distance

we know sound level  β  = 10 log(I/I_{0})        ......................a

put here value (I/I_{0}) = 10^−12 W/m² and  β = 115

115  = 10 log(I/10^−12)

so

I = 0.316228 W/m²

and we know power = intensity × 4π r²    ...............b

power = 0.316228 × 4π (2.30)²

power = 21.021604 W

we know at 100 dB intensity is 0.01 W/m²

so by equation b

power = intensity × 4π r²

21.021604 = 0.01 × 4π r²

so by solving r

r = 12.933855 m    = 13 m

distance is 13 m

and

at 10 dB intensity is 1 × 10^–11 W/m²

so by equation b

power = intensity × 4π r²

21.021604 = 1 × 10^–11 × 4π r²

by solving r we get

r = 409004.412465 m = 409 km

5 0
3 years ago
15 points! An atomic nucleus initially moving at 420 m/s emits an alpha particle in the direction of its velocity, and the remai
alexandr1967 [171]

The alpha particle is emitted at 4235 m/s

Explanation:

We can use the law of conservation of momentum to solve the problem: the total momentum of the original nucleus must be equal to the total momentum after the alpha particle has been emitted. Therefore:

p_i = p_f\\ Mu=m_1 v_1 + m_2 v_2 =  

where:  

M =222u is the mass of the original nucleus

v=420 m/s is the initial velocity of the nucleus

m_1 = 4 u is the mass of the alpha particle

v_1 is the final velocity of the alpha particle

m_2 = 222u-4u = 218 u is the mass of the daughter nucleus

v_2 = 350 m/s is the final velocity of the nucleus

Solving for v_1, we  find the final velocity of the alpha particle:

v_1 = \frac{Mu-m_2 v_2}{m_1}=\frac{(222)(420)-(218)(350)}{4}=4235 m/s

Learn more about momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

4 0
3 years ago
The motion of a car on a position-time graph is represented with a horizontal line. What does this indicate about the car's moti
Art [367]

Answer:

B

Explanation:

on USAtestprep

7 0
3 years ago
A high power line carries a current of 1.0 kA. What is the strength of the magnetic field this line produces at the ground, 10 m
solmaris [256]

Answer:

The strength of the magnetic field that the line produces is 2x10^{-5} Tesla.

Explanation:

From Biot-Savart law, the equation to determine the strength of the magnetic field for any straight wire can be deduced:

           

B = \frac{\mu_{0}I}{2\pi r} (1)      

                                     

Where \mu_{0} is the permiability constant, I is the current and r is the distance from the wire.    

             

Notice that it is necessary to express the current, I, from kiloampere to ampere.

I = 1.0kA \cdot \frac{1000A}{1kA} ⇒ 1000A

Finally, equation 1 can be used:

B = \frac{(4\pi x10^{-7}T.m/A)(1000A)}{2\pi (10m)}    

           

B = 2x10^{-5}T    

Hence, the strength of the magnetic field that the line produces is 2x10^{-5} Tesla.

         

8 0
3 years ago
a 4m long straight wir that carries acurrent of 0.5A is placed perpendicular to a uniform magnetic field. if the size of magneti
PolarNik [594]

Answer:

B=0.2T

Explanation:

given required solution

l=4m B=? <em>F</em><em>=</em><em>BIL</em>

i=0.5A B=F/IL

F=0.4N B=0.4N/0.5A*4m

B=0.4/2=0.2T

5 0
3 years ago
Other questions:
  • What is true about all uranium atoms?they each have the same number of nuclear particles.they each have the same number of neutr
    15·2 answers
  • What is group 18 of the periodic table called
    7·2 answers
  • Block 1, of mass m1 = 3.90 kg , moves along a frictionless air track with speed v1 = 31.0 m/s . It collides with block 2, of mas
    14·2 answers
  • All electromagnetic waves travel in vacuum at the speed of c=3×10^8 m/s. Find the wavelength of microwaves of frequency 10^10 Hz
    5·1 answer
  • ramp, which makes an angle of 30o degrees to the horizontal. A distance d = 1.3 m away from the block is an unstretched spring w
    8·2 answers
  • An apple in a tree has a gravitational store of 8J. As it falls, it accelerates constantly until it hits the ground. What is the
    8·1 answer
  • A light beam which is amplified into a strong concetrated beam of light is known as A) a laser. B) a transistor. C) a microwave
    12·2 answers
  • Can someone plzzzz help with these 3 I don’t understand
    15·1 answer
  • To describe velocity, you need to know ____. (1 point)
    6·2 answers
  • Three-fourths of the elements on the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!