1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stella [2.4K]
3 years ago
12

Riding a bike is an example of a procedural memory.

Engineering
2 answers:
Alexandra [31]3 years ago
5 0
True its the answer
Viefleur [7K]3 years ago
4 0

Answer:

True reading a bike would be an example of procedural memory

You might be interested in
La iluminación de la superficie de un patio amplio es 1600 lx cuando el ángulo de elevación del sol 53°. Calcular la iluminación
gregori [183]

Answer:

 I = 1205.69 Lx

Explanation:

The irradiation or intensity of the solar radiation on the earth is maximum for the vertical fire, with a value I₀

          I = I₀ sin θ

in this case with the initial data we can calculate the initial irradiance

         I₀ = \frac{I}{sin  \ \theta }

         I₀ = 1600 /sin 53

         I₀ = 2003.42 lx

for when the angle is θ = 37º

         I = 2003.42 sin 37

         I = 1205.69 Lx

6 0
3 years ago
For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of t
Strike441 [17]

Answer:

the elongation of the metal alloy is 21.998 mm

Explanation:

Given the data in the question;

K = σT/ (εT)ⁿ

given that metal alloy true stress σT = 345 Mpa, plastic true strain εT = 0.02,

strain-hardening exponent n = 0.22

we substitute

K = 345 / 0.02^{0.22

K = 815.8165 Mpa

next, we determine the true strain

(εT) = (σT/ K)^1/n

given that σT = 412 MPa

we substitute

(εT) = (412 / 815.8165 )^(1/0.22)

(εT) = 0.04481 mm

Now, we calculate the instantaneous length

l_i = l_0e^{ET

given that l_0 = 480 mm

we substitute

l_i =480mm × e^{0.04481

l_i =  501.998 mm

Now we find the elongation;

Elongation = l_i - l_0

we substitute

Elongation = 501.998 mm - 480 mm

Elongation = 21.998 mm

Therefore, the elongation of the metal alloy is 21.998 mm

6 0
2 years ago
AC motor characteristics require the applied voltage to be proportionally adjusted by an AC drive whenever the frequency is chan
Margarita [4]
The answer is false
6 0
3 years ago
Read 2 more answers
The link acts as part of the elevator control for a small airplane. If the attached aluminum tube has an inner diameter of 25 mm
aksik [14]

Answer:

Tmax=14.5MPa

Tmin=10.3MPa

Explanation:

T = 600 * 0.15 = 90N.m

T_max =\frac{T_c}{j}  = \frac{x}{y}  = \frac{90 \times 0.0175}{\frac{\pi}{2} \times (0.0175^4-0.0125^4)}

=14.5MPa

T_{min} =\frac{T_c}{j}  = \frac{x}{y}  = \frac{90 \times 0.0125}{\frac{\pi}{2} \times (0.0175^4-0.0125^4)}

=10.3MPa

7 0
3 years ago
Briefly discuss if it would be better to operate with pumps in parallel or series and how your answer would change as the steepn
Aleksandr [31]

Answer:

1) In series, the combined head will move from point 1 to point 2 in theory. However, practically speaking, the combined head and flow rate will move along the system curve to point 3.

2) In parallel, the combined head and volume flow will move along the system curve from point 1 to point 3.

Explanation:

1) Pump in series:

When two or more pumps are connected in series, their resulting pump performance curve will be obtained by adding their respective heads at the same flow rate as shown in the first diagram attached.

In the first diagram, we have 3 curves namely:

- system curve

- single pump curve

- 2 pump in series curve

Also, we have points labeled 1, 2 and 3.

- Point 1 represents the point that the system operates with one pump running.

- Point 2 represents the point where the head of two identical pumps connected in series is twice the head of a single pump flowing at the same rate.

- Point 3 is the point where the system is operating when both pumps are running.

Now, since the flowrate is constant, the combined head will move from point 1 to point 2 in theory. However, practically speaking, the combined head and flow rate will move along the system curve to point 3.

2) Pump in parallel:

When two or more pumps are connected in parallel, their resulting pump performance curve will be obtained by adding their respective flow rates at same head as shown in the second diagram attached.

In the second diagram, we have 3 curves namely:

- system curve

- single pump curve

- 2 pump in series curve

Also, we have points labeled 1, 2 and 3

- Point 1 represents the point that the system operates with one pump running.

- Point 2 represents the point where the flow rate of two identical pumps connected in series is twice the flow rate of a single pump.

- Point 3 is the point where the system is operating when both pumps are running.

In this case, the combined head and volume flow will move along the system curve from point 1 to point 3.

5 0
2 years ago
Other questions:
  • A large part in a turbine-generator unit operates near room temperature and is made of ASTM A470-8 steel ( ). A surface crack ha
    11·1 answer
  • Part of the following pseudocode is incompatible with the Java, Python, C, and C++ language Identify the problem. How would you
    12·1 answer
  • 4. At what temperature does an engine run cleanest with least wear?
    11·1 answer
  • How many astronauts work<br> in the International Space Station
    7·1 answer
  • What additional information would make the following problem statement stronger? Select all that apply.
    8·1 answer
  • Giving away free brainliest your welcome​
    15·2 answers
  • How do you solve this. I dont know how so I need steps if you dont mind
    13·1 answer
  • What kind of analysis would be conducted to identify project costs?
    11·1 answer
  • What are the four types of physical hazards?
    13·2 answers
  • Does an electronic clock use electrical energy?​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!