1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pychu [463]
3 years ago
5

1 kg of saturated steam at 1000 kPa is in a piston-cylinder and the massless cylinder is held in place by pins. The pins are rem

oved and the system suddenly and adiabatically expands to 5x its original volume before the piston hits a pair of upper pins. The expansion takes place against an atmosphere is 60 kPa. What is the final specific internal energy of the system
Engineering
1 answer:
BARSIC [14]3 years ago
3 0

Answer:

The final specific internal energy of the system is 1509.91 kJ/kg

Explanation:

The parameters given are;

Mass of steam = 1 kg

Initial pressure of saturated steam p₁ = 1000 kPa

Initial volume of steam, = V₁

Final volume of steam = 5 × V₁

Where condition of steam = saturated at 1000 kPa

Initial temperature, T₁  = 179.866 °C = 453.016 K

External pressure = Atmospheric = 60 kPa

Thermodynamic process = Adiabatic expansion

The specific heat ratio for steam = 1.33

Therefore, we have;

\dfrac{p_1}{p_2} = \left (\dfrac{V_2}{V_1} \right )^k = \left [\dfrac{T_1}{T_2}   \right ]^{\dfrac{k}{k-1}}

Adding the effect of the atmospheric pressure, we have;

p = 1000 + 60 = 1060

We therefore have;

\dfrac{1060}{p_2} = \left (\dfrac{5\cdot V_1}{V_1} \right )^{1.33}

P_2= \dfrac{1060}{5^{1.33}}  = 124.65 \ kPa

\left [\dfrac{V_2}{V_1} \right ]^k = \left [\dfrac{T_1}{T_2}   \right ]^{\dfrac{k}{k-1}}

\left [\dfrac{V_2}{V_1} \right ]^{k-1} = \left \dfrac{T_1}{T_2}   \right

5^{0.33} = \left \dfrac{T_1}{T_2}   \right

T₁/T₂ = 1.70083

T₁ = 1.70083·T₂

T₂ - T₁ = T₂ - 1.70083·T₂

Whereby the temperature of saturation T₁ = 179.866 °C = 453.016 K, we have;

T₂ = 453.016/1.70083 = 266.35 K

ΔU = 3×c_v×(T₂ - T₁)

c_v = cv for steam at 453.016 K = 1.926 + (453.016 -450)/(500-450)*(1.954-1.926) = 1.93 kJ/(kg·K)

cv for steam at 266.35 K = 1.86  kJ/(kg·K)

We use cv given by  (1.93 + 1.86)/2 = 1.895 kJ/(kg·K)

ΔU = 3×c_v×(T₂ - T₁) = 3*1.895 *(266.35 -453.016) = -1061.2 kJ/kg

The internal energy for steam = U_g = h_g -pV_g

h_g = 2777.12 kJ/kg

V_g = 0.194349 m³/kg

p = 1000 kPa

U_{g1} = 2777.12 - 0.194349 * 1060 = 2571.11 kJ/kg

The final specific internal energy of the system is therefore, U_{g1} + ΔU = 2571.11 - 1061.2 = 1509.91 kJ/kg.

You might be interested in
Who is/are the founder/founders of transistor? ​
den301095 [7]

Answer:

William Shockley, Walter Houser Brattain and John Bardeen.

Explanation:

It was built in 1947 and they won the novel peace prize in 1956

7 0
3 years ago
Read 2 more answers
Determine the period of each of the following discrete-time signals (if a signal is not periodic, denote its period by infinity)
sergiy2304 [10]

Answer:

a) it is periodic

N = (20/3)k = 20 { for K =3}

b) it is Non-Periodic.

N = ∞

c) x(n) is periodic

N = LCM ( 5, 20 )

Explanation:

We know that In Discrete time system, complex exponentials and sinusoidal signals are periodic only when ( 2π/w₀) ratio is a rational number.

then the period of the signal is given as

N = ( 2π/w₀)K

k is least integer for which N is also integer

Now, if x(n) = x1(n) + x2(n) and if x1(n) and x2(n) are periodic then x(n) will also be periodic; given N = LCM of N1 and N2

now

a) cos(2π(0.15)n)

w₀ = 2π(0.15)

Now, 2π/w₀ = 2π/2π(0.15) = 1/(0.15) = 1×20 / ( 0.15×20) = 20/3

so, it is periodic

N = (20/3)k = 20 { for K =3}

b) cos(2n);

w₀ = 2

Now, 2π/w₀ = 2π/2) = π

so, it is Non-Periodic.

N = ∞

c)  cos(π0.3n) + cos(π0.4n)

x(n) = x1(n) + x2(n)

x1(n) = cos(π0.3n)

x2(n) =  cos(π0.4n)

so

w₀ = π0.3

2π/w₀  = 2π/π0.3 = 2/0.3 = ( 2×10)/(0.3×10) = 20/3

∴ N1 = 20

AND

w₀ = π0.4

2π/w₀  = 2π/π0. = 2/0.4 = ( 2×10)/(0.4×10) = 20/4 = 5

∴ N² = 5

so, x(n) is periodic

N = LCM ( 5, 20 )

6 0
3 years ago
Guess My Favorite Kolor Guys !
bonufazy [111]

Answer: blue

Explanation: blue cuz you look like somebody who likes blue

5 0
3 years ago
Read 2 more answers
When you apply for your driver license, you consent to take a ____ test when asked to do so by a law enforcement officer. memory
n200080 [17]

Answer:

Driving test

Explanation:

Usually according to laws in countries worldwide, to be licenced to drive, one is required to go through a driving school to learn the ethics and rules of driving.

4 0
2 years ago
What is the primary reason traffic laws exist ?
kramer

so people dont die whaddya think?

4 0
3 years ago
Read 2 more answers
Other questions:
  • To water his lawn, a homeowner uses two hoses. One connects to the faucet, the other to the end of the first hose to make the ho
    14·1 answer
  • Answer this question fast
    8·1 answer
  • How fast is a 2012 nissan sentra<br>speed and acceleration ​
    15·1 answer
  • Can i use two shunts and one meter
    11·2 answers
  • 3. Write down the total thermal resistance for a double-pipe heat exchanger. Show how to convert from total resistance to an ove
    12·2 answers
  • Which line from "On Becoming an Inventor" supports the idea that Dean's time at Worcester Polytechnic Institute was very useful
    13·2 answers
  • A train which is traveling at 70 mi/hr applies its brakes as it reaches point A and slows down with a constant deceleration. Its
    12·1 answer
  • A car is about to start but it blows up. what is the problem with the car<br> ?
    6·2 answers
  • In a device to produce drinking water, humid air at 320C, 90% relative humidity and 1 atm is cooled to 50C at constant pressure.
    14·1 answer
  • true or false: the types of building materials that’s should be used in a project does not constitute a conditional for projects
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!