1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pychu [463]
3 years ago
5

1 kg of saturated steam at 1000 kPa is in a piston-cylinder and the massless cylinder is held in place by pins. The pins are rem

oved and the system suddenly and adiabatically expands to 5x its original volume before the piston hits a pair of upper pins. The expansion takes place against an atmosphere is 60 kPa. What is the final specific internal energy of the system
Engineering
1 answer:
BARSIC [14]3 years ago
3 0

Answer:

The final specific internal energy of the system is 1509.91 kJ/kg

Explanation:

The parameters given are;

Mass of steam = 1 kg

Initial pressure of saturated steam p₁ = 1000 kPa

Initial volume of steam, = V₁

Final volume of steam = 5 × V₁

Where condition of steam = saturated at 1000 kPa

Initial temperature, T₁  = 179.866 °C = 453.016 K

External pressure = Atmospheric = 60 kPa

Thermodynamic process = Adiabatic expansion

The specific heat ratio for steam = 1.33

Therefore, we have;

\dfrac{p_1}{p_2} = \left (\dfrac{V_2}{V_1} \right )^k = \left [\dfrac{T_1}{T_2}   \right ]^{\dfrac{k}{k-1}}

Adding the effect of the atmospheric pressure, we have;

p = 1000 + 60 = 1060

We therefore have;

\dfrac{1060}{p_2} = \left (\dfrac{5\cdot V_1}{V_1} \right )^{1.33}

P_2= \dfrac{1060}{5^{1.33}}  = 124.65 \ kPa

\left [\dfrac{V_2}{V_1} \right ]^k = \left [\dfrac{T_1}{T_2}   \right ]^{\dfrac{k}{k-1}}

\left [\dfrac{V_2}{V_1} \right ]^{k-1} = \left \dfrac{T_1}{T_2}   \right

5^{0.33} = \left \dfrac{T_1}{T_2}   \right

T₁/T₂ = 1.70083

T₁ = 1.70083·T₂

T₂ - T₁ = T₂ - 1.70083·T₂

Whereby the temperature of saturation T₁ = 179.866 °C = 453.016 K, we have;

T₂ = 453.016/1.70083 = 266.35 K

ΔU = 3×c_v×(T₂ - T₁)

c_v = cv for steam at 453.016 K = 1.926 + (453.016 -450)/(500-450)*(1.954-1.926) = 1.93 kJ/(kg·K)

cv for steam at 266.35 K = 1.86  kJ/(kg·K)

We use cv given by  (1.93 + 1.86)/2 = 1.895 kJ/(kg·K)

ΔU = 3×c_v×(T₂ - T₁) = 3*1.895 *(266.35 -453.016) = -1061.2 kJ/kg

The internal energy for steam = U_g = h_g -pV_g

h_g = 2777.12 kJ/kg

V_g = 0.194349 m³/kg

p = 1000 kPa

U_{g1} = 2777.12 - 0.194349 * 1060 = 2571.11 kJ/kg

The final specific internal energy of the system is therefore, U_{g1} + ΔU = 2571.11 - 1061.2 = 1509.91 kJ/kg.

You might be interested in
Two players find themselves in a legal battle over a patent. The patent is worth 20 for each player, so the winner would receive
Alborosie

Answer:

The solution and complete explanation for the above question and mentioned conditions is given below in the attached document.i hope my explanation will help you in understanding this particular question.

Explanation:

5 0
3 years ago
Determine the output logic-levels(boolean-levels) for XNOR if the two-inputs are inverted?​
stiv31 [10]

Answer:

<em><u>1</u></em>

<em><u>1What is the output of 2 Input XNOR gate if both the inputs are same? Explanation: The output of 2 Input XNOR gate is 1 if both the inputs are same. The output of the XNOR gate is 1 if both the inputs are logic 0 or logic 1. This is why they are called as equality detector.</u></em>

4 0
2 years ago
Multiply. Write the answer in simplest form. 1 3/10×1/8
kicyunya [14]

9514 1404 393

Answer:

  13/80

Explanation:

The product is ...

  (1 3/10)×(1/8) = (13/10)×(1/8) = (13×1)/(10×8) = 13/80

4 0
2 years ago
214Bi83 --&gt; 214Po84 + eBismuth-214 undergoes first-order radioactive decay to polonium-214 by the release of a beta particle,
Zolol [24]

Answer:

(C) ln [Bi]

Explanation:

Radioactive materials will usually decay based on their specific half lives. In radioactivity, the plot of the natural logarithm of the original radioactive material against time will give a straight-line curve. This is mostly used to estimate the decay constant that is equivalent to the negative of the slope. Thus, the answer is option C.

3 0
3 years ago
Read 2 more answers
Air (cp = 1.005 kJ/kg·°C) is to be preheated by hot exhaust gases in a cross-flow heat exchanger before it enters the furnace. A
uysha [10]

Answer:

Q=67.95 W

T=119.83°C

Explanation:

Given that

For air

Cp = 1.005 kJ/kg·°C

T= 20°C

V=0.6 m³/s

P= 95 KPa

We know that for air

P V = m' R T

95 x 0.6 = m x 0.287 x 293

m=0.677 kg/s

For gas

Cp = 1.10 kJ/kg·°C

m'=0.95 kg/s

Ti=160°C   ,To= 95°C

Heat loose by gas = Heat gain by air

[m Cp ΔT] for air =[m Cp ΔT] for gas

by putting the values

0.677 x 1.005 ( T - 20)= 0.95 x 1.1 x ( 160 -95 )

T=119.83°C

T is the exit temperature of the air.

Heat transfer

Q=[m Cp ΔT] for gas

Q=0.95 x 1.1 x ( 160 -95 )

Q=67.95 W

7 0
3 years ago
Other questions:
  • Three return steam lines in a chemical processing plan enter a collection tank operating at a steady state at 1 bar. Steam enter
    11·1 answer
  • Your coworker was impressed with the efficiency you showed in the previous problem and would like to apply your methods to a pro
    5·1 answer
  • What is compression ratio of an Otto cycle? How does it affect the thermal efficiency of the cycle?
    14·1 answer
  • If a toy car covers a distance of 42m in 7sec, what is it’s speed
    9·2 answers
  • Often an attacker crafts e-mail attacks containing malware designed to take advantage of the curiosity or even greed of the reci
    14·1 answer
  • Determine the wattmeter reading when it is connected to resistor load.​
    11·1 answer
  • Please help I am give brainiliest
    9·1 answer
  • Use the drop-down menus to complete the statements about using OneNote in Outlook meeting requests.
    15·1 answer
  • PDC Bank is working on creating an AI application that enables customers to send SMS to the AI application to allow banking acti
    9·1 answer
  • Read the passage.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!