1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastaziya [24]
3 years ago
12

Describing Tasks for Stationary Engineers Click this link to view O*NET’s Tasks section for Stationary Engineers. Note that comm

on tasks are listed toward the top, and less common tasks are listed toward the bottom. According to O*NET, what are common tasks performed by Stationary Engineers? Check all that apply. observing and interpreting readings on gauges, meters, and charts managing financial resources to order supplies and equipment writing computer programs to control equipment testing boiler water quality or arranging for testing creating safety regulations after experimentation operating or tending stationary engines, boilers, and auxiliary equipment
Engineering
2 answers:
Natali5045456 [20]3 years ago
8 0

Answer:

A, D, F

Explanation:

took on edge.

11111nata11111 [884]3 years ago
8 0

Answer:

The answer is A,D,F

A:observing and interpreting readings on gauges, meters, and charts

D:testing boiler water quality or arranging for testing

F:operating or tending stationary engines, boilers, and auxiliary equipment

Explanation:

I got all right on edge.

You might be interested in
How to design a solar panel<br>​
artcher [175]

Answer:

#1) Find out how much power you need

#2 Calculate the amount of batteries you need.

#3 Calculate the number of solar panels needed for your location and time of year.

#4 Select a solar charge controller.

#5 Select an inverter.

#6 Balance of system

Explanation: To design solar panel, consider the following steps

1.) Find the power consumption demands

The first step in designing a solar PV system is to find out the total power and energy consumption of all loads that need to be supplied by the solar PV system as follows:

Calculate total Watt-hours per day for each appliance used.

 Add the Watt-hours needed for all appliances together to get the total Watt-hours per day which must be delivered to the appliances.

Calculate total Watt-hours per day needed from the PV modules.

Multiply the total appliances Watt-hours per day times 1.3 (the energy lost in the system) to get the total Watt-hours per day which must be provided by the panels.

2. Size the PV modules

Different size of PV modules will produce different amount of power. To find out the sizing of PV module, the total peak watt produced needs. The peak watt (Wp) produced depends on size of the PV module and climate of site location. We have to consider panel generation factor which is different in each site location. For Thailand, the panel generation factor is 3.43. To determine the sizing of PV modules, calculate as follows:

2.1 Calculate the total Watt-peak rating needed for PV modules

Divide the total Watt-hours per day needed from the PV modules (from item 1.2) by 3.43 to get the total Watt-peak rating needed for the PV panels needed to operate the appliances.

Calculate the number of PV panels for the system

Divide the answer obtained in item 2.1 by the rated output Watt-peak of the PV modules available to you. Increase any fractional part of result to the next highest full number and that will be the 

number of PV modules required.

Result of the calculation is the minimum number of PV panels. If more PV modules are installed, the system will perform better and battery life will be improved. If fewer PV modules are used, the system may not work at all during cloudy periods and battery life will be shortened.

3. Inverter sizing

An inverter is used in the system where AC power output is needed. The input rating of the inverter should never be lower than the total watt of appliances. The inverter must have the same nominal voltage as your battery.

For stand-alone systems, the inverter must be large enough to handle the total amount of Watts you will be using at one time. The inverter size should be 25-30% bigger than total Watts of appliances. In case of appliance type is motor or compressor then inverter size should be minimum 3 times the capacity of those appliances and must be added to the inverter capacity to handle surge current during starting.

For grid tie systems or grid connected systems, the input rating of the inverter should be same as PV array rating to allow for safe and efficient operation.

4. Battery sizing

The battery type recommended for using in solar PV system is deep cycle battery. Deep cycle battery is specifically designed for to be discharged to low energy level and rapid recharged or cycle charged and discharged day after day for years. The battery should be large enough to store sufficient energy to operate the appliances at night and cloudy days. To find out the size of battery, calculate as follows:

     4.1 Calculate total Watt-hours per day used by appliances.

     4.2 Divide the total Watt-hours per day used by 0.85 for battery loss.

     4.3 Divide the answer obtained in item 4.2 by 0.6 for depth of discharge.

     4.4 Divide the answer obtained in item 4.3 by the nominal battery voltage.

     4.5 Multiply the answer obtained in item 4.4 with days of autonomy (the number of days that you need the system to operate when there is no power produced by PV panels) to get the required Ampere-hour capacity of deep-cycle battery.

Battery Capacity (Ah) = Total Watt-hours per day used by appliancesx Days of autonomy

(0.85 x 0.6 x nominal battery voltage)

5. Solar charge controller sizing

The solar charge controller is typically rated against Amperage and Voltage capacities. Select the solar charge controller to match the voltage of PV array and batteries and then identify which type of solar charge controller is right for your application. Make sure that solar charge controller has enough capacity to handle the current from PV array.

For the series charge controller type, the sizing of controller depends on the total PV input current which is delivered to the controller and also depends on PV panel configuration (series or parallel configuration).

According to standard practice, the sizing of solar charge controller is to take the short circuit current (Isc) of the PV array, and multiply it by 1.3

Solar charge controller rating = Total short circuit current of PV array x 1.3

5 0
3 years ago
3) Explain how dc machines Can work as motor and generator​
weeeeeb [17]

The working principle of a DC machine is when electric current flows through a coil within a magnetic field, and then the magnetic force generates a torque that rotates the dc motor. The DC machines are classified into two types such as DC generator as well as DC motor.

5 0
1 year ago
When water precipitates from the sky, runs off downhill along the ground, or infiltrates down into the soil, its gravitational p
agasfer [191]

Answer:

Geothermal energy.

Explanation:

Geothermal energy is called a renewable energy source because the water is replenished by rainfall, and the heat is continuously produced by the earth.

8 0
3 years ago
Identify which sound type each line contains.
nydimaria [60]

Answer:i can not see it

Explanation:

4 0
3 years ago
A frying pan is connected to a 150-volt circuit. If the resistance of the frying pan is 25 ohms, how many amperes does the fryin
mario62 [17]

Answer:

Explanation:

Ohms Law I=E/R (resistive requires no power factor correction)

150/25= 6 amps

5 0
3 years ago
Other questions:
  • Why do electricians require critical thinking skills? In order to logically identify alternative solutions to problems in order
    8·1 answer
  • A signal containing both a 5k Hz and a 10k Hz component is passed through a low-pass filter with a cutoff frequency of 4k Hz. Wh
    9·1 answer
  • Free ideas free points. You will be reported for answering "no" or I don't know
    11·1 answer
  • Steam enters a nozzle at 400°C and 800 kPa with a velocity of 10 m/s and leaves at 375°C and 400 kPa while losing heat at a rate
    7·1 answer
  • Calculate and plot the radial and circumferential stress distribution in the left ventricle at the end of systole (p 5 80 mmHg;
    13·1 answer
  • 5) /
    12·1 answer
  • Engine blocks are made by using a manufacturing process called​
    12·1 answer
  • In which of the following states would homes most likely have the deepest foundation?
    13·1 answer
  • What are the two (2) different design elements of scratch?
    10·1 answer
  • How could angela use the puzzle to model semiconductors? as an n-type semiconductor with the pegs representing electrons and the
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!