Answer:
Engine horsepower decreases <u>3.5%</u> for every <u>1,000</u> feet above sea level.
Answer:
A) 282.34 - j 12.08 Ω
B) 0.0266 + j 0.621 / unit
C)
A = 0.812 < 1.09° per unit
B = 164.6 < 85.42°Ω
C = 2.061 * 10^-3 < 90.32° s
D = 0.812 < 1.09° per unit
Explanation:
Given data :
Z ( impedance ) = 0.03 i + j 0.35 Ω/km
positive sequence shunt admittance ( Y ) = j4.4*10^-6 S/km
A) calculate Zc
Zc =
=
=
= 282.6 < -2.45°
hence Zc = 282.34 - j 12.08 Ω
B) Calculate gl
gl =
d = 500
z = 0.03 i + j 0.35
y = j4.4*10^-6 S/km
gl = 
= 
= 0.622 < 87.55 °
gl = 0.0266 + j 0.621 / unit
C) exact ABCD parameters for this line
A = cos h (gl) . per unit = 0.812 < 1.09° per unit ( as calculated )
B = Zc sin h (gl) Ω = 164.6 < 85.42°Ω ( as calculated )
C = 1/Zc sin h (gl) s = 2.061 * 10^-3 < 90.32° s ( as calculated )
D = cos h (gl) . per unit = 0.812 < 1.09° per unit ( as calculated )
where : cos h (gl) = 
sin h (gl) = 
Answer:
Coiled tubing is often used to carry out operations similar to wire lining.
R01= 14.1 Ω
R02= 0.03525Ω
<h3>Calculations and Parameters</h3>
Given:
K= E2/E1 = 120/2400
= 0.5
R1= 0.1 Ω, X1= 0.22Ω
R2= 0.035Ω, X2= 0.012Ω
The equivalence resistance as referred to both primary and secondary,
R01= R1 + R2
= R1 + R2/K2
= 0.1 + (0.035/9(0.05)^2)
= 14.1 Ω
R02= R2 + R1
=R2 + K^2.R1
= 0.035 + (0.05)^2 * 0.1
= 0.03525Ω
Read more about resistance here:
brainly.com/question/17563681
#SPJ1
Answer:
a) the inductance of the coil is 6 mH
b) the emf generated in the coil is 18 mV
Explanation:
Given the data in the question;
N = 570 turns
diameter of tube d = 8.10 cm = 0.081 m
length of the wire-wrapped portion l = 35.0 cm = 0.35 m
a) the inductance of the coil (in mH)
inductance of solenoid
L = N²μA / l
A = πd²/4
so
L = N²μ(πd²/4) / l
L = N²μ(πd²) / 4l
we know that μ = 4π × 10⁻⁷ TmA⁻¹
we substitute
L = [(570)² × 4π × 10⁻⁷× ( π × (0.081)² )] / 4(0.35)
L = 0.00841549 / 1.4
L = 6 × 10⁻³ H
L = 6 × 10⁻³ × 1000 mH
L = 6 mH
Therefore, the inductance of the coil is 6 mH
b)
Emf ( ∈ ) = L di/dt
given that; di/dt = 3.00 A/sec
{∴ di = 3 - 0 = 3 and dt = 1 sec}
Emf ( ∈ ) = L di/dt
we substitute
⇒ 6 × 10⁻³ ( 3/1 )
= 18 × 10⁻³ V
= 18 × 10⁻³ × 1000
= 18 mV
Therefore, the emf generated in the coil is 18 mV