Answer:
25 min, 48 sec
Explanation:
Alan:
t = d/v
= 400 mi / 46 mph = 8.70 hr
So it took Alan 8.70 hrs; from 8 am, that's 4:42 pm that he arrives.
t = d/v
= 400 mi / 55 mph = 7.27 hr
So it took Beth 7.27 hrs; from 9 am, that's 4:16:12 that she arrives.
4:42 - 4:16:12 = 25.8 minutes = 25 minutes, 48 sec
Answer:
10.53m/s²
Explanation:
Centripetal acceleration is the acceleration of an object about a circle. The formula for calculating centripetal acceleration is expressed by:

v is the velocity of the car = 24.5m/s
r is the radius of the track = 57.0m
Substitute the given values into the formula:

Hence the centripetal acceleration of the race car is 10.53m/s²
Answer:
Hello! Your answer is, sound in the air is faster
Explanation:
The speed of sound through air is about 340 meters per second. It's faster through water and it's even faster through steel. Light will travel through a vacuum at 300 million meters per second. So they're totally different scales.
Hope I helped! Ask me anything if you have any questions! Brainiest plz. Hope you make an 100% and have a nice day! -Amelia♥
Answer:
Tension in the cable is T = 16653.32 N
Explanation:
Give data:
Cross section Area A = 1.3 m^2
Drag coefficient CD = 1.2
Velocity V = 4.3 m/s
Angle made by cable with horizontal =30 degree
Density 
Drag force FD is given as


Drag force = 14422.2 N acting opposite to the motion
As cable made angle of 30 degree with horizontal thus horizontal component is take into action to calculate drag force
TCos30 = F_D


T = 16653.32 N
Answer:
the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15
Explanation:
Given that;
speed of car V = 120 km/h = 33.3333 m/s
Reaction time of an alert driver = 0.8 sec
Reaction time of an alert driver = 3 sec
extra time taken by sleepy driver over an alert driver = 3 - 0.8 = 2.2 sec
now, extra distance that car will travel in case of sleepy driver will be'
S_d = V × 2.2 sec
S_d = 33.3333 m/s × 2.2 sec
S_d = 73.3333 m
hence, number of car of additional car length n will be;
n = S_n / car length
n = 73.3333 m / 5m
n = 14.666 ≈ 15
Therefore, the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15