<span>2x + x</span>²<span> + 3x + 5x</span>²<span> - 10x (combine like terms)
6x</span>² + 5x -10x
6x² - 5x
which is the same as
-5x +6x²
Your answer is C
<h3>
Answer: Choice B</h3>
=========================================================
Explanation:
The rule we use is
![\Large a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m](https://tex.z-dn.net/?f=%5CLarge%20a%5E%7Bm%2Fn%7D%20%3D%20%5Csqrt%5Bn%5D%7Ba%5Em%7D%20%3D%20%5Cleft%28%5Csqrt%5Bn%5D%7Ba%7D%5Cright%29%5Em)
where 'a' is the base, m stays in the role of the exponent, and n plays the role of the root index (eg: n = 3 is a cube root, n = 4 is a fourth root, and so on).
So for instance,
![\Large 2^{3/4} = \sqrt[4]{2^3} = \left(\sqrt[4]{2}\right)^3](https://tex.z-dn.net/?f=%5CLarge%202%5E%7B3%2F4%7D%20%3D%20%5Csqrt%5B4%5D%7B2%5E3%7D%20%3D%20%5Cleft%28%5Csqrt%5B4%5D%7B2%7D%5Cright%29%5E3)
or in this case,
![\Large t^{5/8} = \sqrt[8]{t^5} = \left(\sqrt[8]{t}\right)^5](https://tex.z-dn.net/?f=%5CLarge%20t%5E%7B5%2F8%7D%20%3D%20%5Csqrt%5B8%5D%7Bt%5E5%7D%20%3D%20%5Cleft%28%5Csqrt%5B8%5D%7Bt%7D%5Cright%29%5E5)