As the temperature of a gas increases, the average kinetic energy of the gas particles increases and the average speed of a gas particle increases.
According to the kinetic theory of gases, all gases are made of microscopic molecules that move in straight lines until they bump into another gas molecule or object. This transfer of energy causes molecules to move around faster and bump into each other more.
Kinetic energy is proportional to the speed of the molecules. As the speed of the colliding molecules increases, so does the total kinetic energy of all the gas molecules. It's pretty difficult to measure the speed of an individual gas molecule.
Instead, temperature can be used as a measure of the average kinetic energy of all the molecules in the gas. As the gas molecules gain energy and move faster, the temperature goes up. This is why Amy feels warmer!
To determine the average kinetic energy of gas molecules, we need to know the temperature of the gas, the universal gas constant (R), and Avogadro's number (NA).
Learn more about kinetic theory of gases here : brainly.com/question/11067389
#SPJ4
Answer:
Samarium
Explanation:
The element Sm describe is called Samarium. This element has unique sets of properties that makes it very unique and distinct.
The lanthanides are found in the f-block on the periodic table of elements.
This element is a moderately hard silvery metal that readily oxidizes in air. It assumes an oxidation state of +3. The element has an atomic number of 62
Answer:
If a reaction produces a gas such as oxygen or carbon dioxide, there are two ways to measure the reaction rate: using a gas syringe to measure the gas produced, or calculating the reduction in the mass of the reaction solution.
Answer:
Chemical bonds are the connections between atoms in a molecule. These bonds include both strong intramolecular interactions, such as covalent and ionic bonds. They are related to weaker intermolecular forces, such as dipole-dipole interactions, the London dispersion forces, and hydrogen bonding.