Answer:
<u><em>on flow properties and free-flowing and cohesive. </em></u>
Explanation:
the power Free flowing powders do not cling together, as cohesive powders stick to each other and form that do not disperse well during mixing
Answer:
a = 3.125 [m/s^2]
Explanation:
In order to solve this problem, we must use the following equation of kinematics. But first, we have to convert the speed of 90 [km/h] to meters per second.


where:
Vf = final velocity = 25 [m/s]
Vi = initial velocity = 0
a = acceleration [m/s^2]
t = time = 8 [s]
The initial speed is zero as the bus starts to koverse from rest. The positive sign of the equation means that the bus increases its speed.
25 = 0 + a*8
a = 3.125 [m/s^2]
Answer:
The energy in its ground state is 10 meV.
Explanation:
It is given that,
The energy of the electron in its first excited state is 40 meV.
Energy of the electron in any state is given by :

For ground state, n = 1
.............(1)
For first excited state, n = 2
.............(2)
Dividing equation (1) and (2), we get :


So, the energy in its ground state is 10 meV. Hence, this is the required solution.
Answer:
The water molecule cannot escape, since the average velocity of the water molecules is less than one sixth of the escape velocity of venus.
Explanation:
The average speed of gas molecules is given by:

R is the gas constant, T is the temperature and M the molar mass of the gas.
We know that a water molecule has a mass that is 18 times that of a hydrogen atom:

So, we have:

The water molecule cannot escape, since the average velocity of the water molecules is less than one sixth of the escape velocity of venus:

I would think that you would have to do 42/2=21Hz, but I'm not sure...