Result of the other variable
Answer:
B
Explanation:
graph b shows a steady pace of movement for 20 minutes and then shows a plateau in the distance, showing that while time keeps moving (obviously), the distance doesn't change. then after 5 minutes, the student gets up and starts running again. hope this helped!
Answer:
Police powers are the fundamental ability of a government to enact laws to coerce its citizenry for the public good, although the term eludes an exact definition. The term does not directly relate to the common connotation of police as officers charged with maintaining public order, but rather to broad governmental regulatory power. Berman v. Parker, a 1954 U.S. Supreme Court case, stated that “public safety, public health, morality, peace and quiet, law and order. . . are some of the more conspicuous examples of the traditional application of the police power”; while recognizing that “an attempt to define police powers reach or trace its outer limits is fruitless.”
Answer:
(A) 0.63 J
(B) 0.15 m
Explanation:
length (L) = 0.75 m
mass (m) =0.42 kg
angular speed (ω) = 4 rad/s
To solve the questions (a) and (b) we first need to calculate the rotational inertia of the rod (I)
I = Ic + m
Ic is the rotational inertia of the rod about an axis passing trough its centre of mass and parallel to the rotational axis
h is the horizontal distance between the center of mass and the rotational axis of the rod
I =
)^{2}[/tex]
I =
)^{2}[/tex])
I = 0.07875 kg.m^{2}
(A) rods kinetic energy = 0.5I
= 0.5 x 0.07875 x
= 0.63 J 0.15 m
(B) from the conservation of energy
initial kinetic energy + initial potential energy = final kinetic energy + final potential energy
Ki + Ui = Kf + Uf
at the maximum height velocity = 0 therefore final kinetic energy = 0
Ki + Ui = Uf
Ki = Uf - Ui
Ki = mg(H-h)
where (H-h) = rise in the center of mass
0.63 = 0.42 x 9.8 x (H-h)
(H-h) = 0.15 m