1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solniwko [45]
3 years ago
14

You toss a ball straight up in the air. Immediately after you let go of it, what force or forces are acting on the ball

Physics
1 answer:
viva [34]3 years ago
8 0

Answer and Explanation: When tossing a ball up in the air, the forces acting on the ball are due to Gravity, which is defined by gravitational acceleration on that location on Earth (approximately 9.8 m/s²) multiplied by mass of the ball; Force of thrown, i.e., the force you threw the ball and air resistance force, which is proportional to the square of the ball's through the air and the ball's cross section area. To facilite calculations, air resistance force is normally ignored.

You might be interested in
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
3 years ago
Read 2 more answers
A 265 g mass attached to a horizontal spring oscillates at a frequency of 3.40 Hz . At t =0s, the mass is at x= 6.20 cm and has
lara [203]

Answer:

The phase constant is 7.25 degree  

Explanation:

given data

mass = 265 g

frequency = 3.40 Hz

time t = 0 s

x = 6.20 cm

vx = - 35.0 cm/s

solution

as phase constant is express as

y = A cosФ ..............1

here A is amplitude that is = \sqrt{(\frac{v_x}{\omega })^2+y^2 }  = \sqrt{(\frac{35}{2\times \pi  \times y})^2+6.2^2 }  =  6.25 cm

put value in equation 1

6.20 = 6.25 cosФ

cosФ  = 0.992

Ф = 7.25 degree  

so the phase constant is 7.25 degree  

5 0
3 years ago
A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium position with a downward velocity of
Rudiy27

Answer:

Explanation:

Given

mass of spring m=100\ gm

extension in spring x=5\ cm

downward velocity v=70\ cm/s

Position in undamped free vibration is given by

u(t)=A\cos \omega _0t+B\sin \omega _0t

where \omega _0^2=\frac{k}{m}

also \frac{k}{m}=\frac{g}{L}

\omega _0^2=\frac{k}{m}=\frac{9.8}{0.05}

\omega _0=14

u(t)=A\cos(14t)+B\sin(14t)

it is given

u(0)=0

u'(0)=70\ cm/s

substituting values we get

A=0

u(t)=B\sin (14t)

u'(t)=14B\cos (14t)

70=14B

B=\frac{10}{2}

B=5

u(t)=5\sin (14t)

3 0
3 years ago
A car engine applies a force of 65,000 N, how much work is done by the engine as it pushed a car a distance of 75 m?
kupik [55]

Answer:

workdone = force \times distance \\  = 65000 \times 75 \\  = 4,875,000 \: J

3 0
3 years ago
A motor produces less mechanical energy than the energy it uses because the motor?
In-s [12.5K]
<span>A motor produces less mechanical energy than the energy it uses because the motor looses some energy to heat.</span>
3 0
3 years ago
Other questions:
  • If we rotate on our axis does that count as a day
    7·1 answer
  • The element copper has 29 protons. What is the atomic number of copper?
    15·2 answers
  • A 100 kg boat is floating in water. half of the boat is submerged under water. what is the weight of the boat?
    13·1 answer
  • Which statement about the effects of medium on the speed of a mechanical wave is true?
    8·1 answer
  • Small paragraph explaining how how potential and kinetic energy are related
    8·2 answers
  • Anybody know the answer to this ?
    9·1 answer
  • Sedimentary layers that are deposited on an angle are called?
    10·1 answer
  • ਨਿਰਭਰ ਕਰਦੀ<br>ਇਬਾਣੀ ਸਰੀਰਜ ਸਮੱਰਥਾ ਜਿਹੜਾ ਕਿੰ- ਉਨ ਬਾਦ ਤੇ​
    11·1 answer
  • In general, what do you think are the benefits if you already achieve your body goals.​
    7·1 answer
  • A tennis player tosses a tennis ball straight up and then catches it after 2.07 s at the same height as the point of release.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!