The number of electrons in an atom's outermost valence shell governs its bonding behaviour. Elements whose atoms have the same number of valence electrons are grouped together in the Periodic Table. ... Nonmetals tend to attract additional valence electrons to form either ionic or covalent bonds.
Answer:
(a) adding 0.050 mol of HCl
Explanation:
A buffer is defined as the mixture of a weak acid and its conjugate base -or vice versa-.
In the buffer:
1.0L × (0.10 mol / L) = 0.10 moles of HF -<em>Weak acid-</em>
1.0L × (0.050 mol / L) = 0.050 moles of NaF -<em>Conjugate base-</em>
-The weak acid reacts with bases as NaOH and the conjugate base reacts with acids as HCl-
Thus:
<em>(a) adding 0.050 mol of HCl:</em> The addition of 0.050moles of HCl produce the reaction of 0.050 moles of NaF producing HF. That means after the reaction, all NaF is consumed and you will have in solution just the weak acid <em>destroying the buffer</em>.
(b) adding 0.050 mol of NaOH: The NaOH reacts with HF producing more NaF. Would be consumed just 0.050 moles of HF -remaining 0.050 moles of HF-. Thus, the buffer <em>wouldn't be destroyed</em>.
(c) adding 0.050 mol of NaF: The addition of conjugate base <em>doesn't destroy the buffer</em>
Answer:
They all contain switches
Frequency is defined as the number of waves per second. In this machine 25 waves pass in one second.
We need to calculate the number of waves that pass a particular point during one second.
During 2 seconds -25 waves
Therefore in one second - 25/2 = 12.5 waves/s.
1 wave per second has the unit Hertz (Hz)
Therefore answer is 12.5 Hz