<span>A fast moving stream of air has a lower air pressure than a
slower air stream. As the stream of air moved over the
top of the paper, the air pressure over the paper dropped. The
air pressure underneath the paper stayed the same. The
greater air pressure underneath lifted the paper strip and it
rose. The idea that a moving air stream has lower air pressure
than air that is not moving is called “Bernoulli’s Principle”.
</span>The
force of the moving air underneath the balloon was enough to
hold it up. The weight added by the paper clip prevents
the balloon from going too high. But that is only part
of the story. The balloon stays inside the moving stream
of air because the pressure inside is the air stream is lower
than the still air around it. As the balloon moves toward the
still air outside of the air stream, the higher pressure of
the still air forces the balloon back into the lower pressure
of the air stream. Bernoulli’s Principle at work again!
The theoretical yield of H₂S is 13.5 g.
The percent yield is 75.5 %.
<h3>What is the theoretical yield of H₂S from the reaction?</h3>
The equation of the reaction is given below:
Moles of FeS reacting = mass/molar mass
Molar mass of FeS = 88 g/mol
Moles of FeS reacting = 35/88 = 0.398 moles
Moles of H₂S produced = 0.398 moles
Molar mass of H₂S = 34 g/mol
Mass of H₂S produced = 0.398 * 34 = 13.5 g
Theoretical yield of H₂S is 13.5 g.
- Percent yield = actual yield/theoretical yield * 100%
Actual yield of H₂S = 10.2 g
Percent yield = 10.2/13.5 * 100%
Percent yield = 75.5 %
In conclusion, the actual yield is less than the theoretical yield.
Learn more about percent yield at: brainly.com/question/8638404
#SPJ1
White phosphorus melts and then vaporizes at high temperatures. The gas effuses at a rate that is 0.404 times that of neon in the same apparatus under the same conditions-There are 4 atoms of P in the molecule
Explanation:
Ar=30,97g/mol
/
=
=0,404
0,404=
=20,18/30,97*x
X=20,18/30,97*0,163
X=4
There are 4 atoms of P in the molecule
White phosphorus melts and then vaporizes at high temperatures. The gas effuses at a rate that is 0.404 times that of neon in the same apparatus under the same conditions-There are 4 atoms of P in the molecule
3 carbons and 8<span> hydrogens = </span>11 atoms<span> in propane </span>per molecule
<span>2.12 mol C3H8
</span>6.02<span> x </span>1023<span> molecules of C3H8
</span>
11 atoms