1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leya [2.2K]
3 years ago
11

The complexity of bfs and dfs

Engineering
1 answer:
Lelechka [254]3 years ago
3 0

Answer:

BFS uses Queue to find the shortest path. DFS uses Stack to find the shortest path. ... Time Complexity of BFS = O(V+E) where V is vertices and E is edges. Time Complexity of DFS is also O(V+E) where V is vertices and E is edges.

Explanation:

You might be interested in
Determine the required dimensions of a column with a square cross section to carry an axial compressive load of 6500 lb if its l
ycow [4]

Answer: 0.95 inches

Explanation:

A direct load on a column is considered or referred to as an axial compressive load. A direct concentric load is considered axial. If the load is off center it is termed eccentric and is no longer axially applied.

The length= 64 inches

Ends are fixed Le= 64/2 = 32 inches

Factor Of Safety (FOS) = 3. 0

E= 10.6× 10^6 ps

σy= 4000ps

The square cross-section= ia^4/12

PE= π^2EI/Le^2

6500= 3.142^2 × 10^6 × a^4/12×32^2

a^4= 0.81 => a=0.81 inches => a=0.95 inches

Given σy= 4000ps

σallowable= σy/3= 40000/3= 13333. 33psi

Load acting= 6500

Area= a^2= 0.95 ×0.95= 0.9025

σactual=6500/0.9025

σ actual < σallowable

The dimension a= 0.95 inches

3 0
3 years ago
Read 2 more answers
A completely reversible heat pump produces heat ata rate of 300 kW to warm a house maintained at 24°C. Theexterior air, which is
Triss [41]

Answer:

Change in entropy S = 0.061

Second law of thermodynamics is satisfied since there is an increase in entropy

Explanation:

Heat Q = 300 kW

T2 = 24°C = 297 K

T1 = 7°C = 280 K

Change in entropy =

S = Q(1/T1 - 1/T2)

= 300(1/280 - 1/297) = 0.061

There is a positive increase in entropy so the second law is satisfied.

6 0
3 years ago
The 15-kg block A slides on the surface for which µk = 0.3. The block has a velocity v = 10 m/s when it is s = 4 m from the 10-k
sammy [17]

Answer:

s_max = 0.8394m

Explanation:

From equilibrium of block, N = W = mg

Frictional force = μ_k•N = μ_k•mg

Since μ_k = 0.3,then F = 0.3mg

To determine the velocity of Block A just before collision, let's apply the principle of work and energy;

T1 + ΣU_1-2 = T2

So, (1/2)m_a•(v_ao)² - F•s =(1/2)m_a•(v_a1)²

Plugging in the relevant values to get ;

(1/2)•(15)•(10)² - (0.3•15•9.81•4) =(1/2)(15)•(v_a1)²

750 - 176.58 = 7.5(v_a1)²

v_a1 = 8.744 m/s

Using law of conservation of momentum;

Σ(m1v1) = Σ(m2v2)

Thus,

m_a•v_a1 + m_b•v_b1 = m_a•v_a2 + m_b•v_b2

Thus;

15(8.744) + 10(0) = 15(v_a2) + 10(v_b2)

Divide through by 5;

3(8.744) + 2(0) = 3(v_a2) + 2(v_b2)

Thus,

3(v_a2) + 2(v_b2) = 26.232 - - - (eq1)

Coefficient of restitution has a formula;

e = (v_b2 - v_a2)/(v_a1 - v_b1)

From the question, e = 0.6.

Thus;

0.6 = (v_b2 - v_a2)/(8.744 - 0)

0.6 x 8.744 = (v_b2 - v_a2)

(v_b2 - v_a2) = 5.246 - - - (eq2)

Solving eq(1) and 2 simultaneously, we have;

v_b2 = 8.394 m/s

v_a2 = 3.148 m/s

Now, to find maximum compression, let's apply conservation of energy on block B;

T1 + V1 = T2 + V2

Thus,

(1/2)m_b•(v_b2)² + (1/2)k(s_1)² = (1/2)m_b•(v_b'2)² + (1/2)k(s_max)²

(1/2)10•(8.394)² + (1/2)1000(0)² = (1/2)10•(0)² + (1/2)(1000)(s_max)²

500(s_max)² = 352.29618

(s_max)² = 352.29618/500

(s_max)² = 0.7046

s_max = 0.8394m

8 0
3 years ago
A well insulated turbine operates at steady state. Steam enters the turbine at 4 MPa with a specific enthalpy of 3015.4 kJ/kg an
Anarel [89]

Answer:

power developed by the turbine = 6927.415 kW

Explanation:

given data

pressure = 4 MPa

specific enthalpy h1 = 3015.4 kJ/kg

velocity v1 = 10 m/s

pressure = 0.07 MPa

specific enthalpy h2 = 2431.7 kJ/kg

velocity v2 = 90 m/s

mass flow rate = 11.95 kg/s

solution

we apply here  thermodynamic equation that

energy equation that is

h1 + \frac{v1}{2}  + q = h2 + \frac{v2}{2}  + w

put here value with

turbine is insulated so q = 0

so here

3015.4 *1000 + \frac{10^2}{2}  =  2431.7 * 1000 + \frac{90^2}{2}  + w

solve we get

w = 579700 J/kg = 579.7 kJ/kg

and

W = mass flow rate × w

W = 11.95 × 579.7

W = 6927.415 kW

power developed by the turbine = 6927.415 kW

7 0
3 years ago
A/an_ Oscilloscope uses a cathode ray tube and displays all voltages.
MrRa [10]

Answer:

I think it’s B, digital

Explanation:

3 0
3 years ago
Other questions:
  • In some synchronizer applications, the clock frequency f is substituted for the parameter a in metastability MTBF calculations,
    12·1 answer
  • Q5. A hypothetical metal alloy has a grain diameter of 2.4 x 10-2 mm. After a heat treatment at 575°C for 500 min, the grain dia
    7·1 answer
  • Carbon resistors often come as a brown cylinder with colored bands. These colored bands can be read to determine the manufacture
    7·1 answer
  • Write a do-while loop that continues to prompt a user to enter a number less than 100, until the entered number is actually less
    12·1 answer
  • Is normally a large red cable connected to the battery
    11·2 answers
  • When will the entropy value of the universe attained its maximum value?
    13·1 answer
  • A jet impinges directly on to a plate that is oriented normal to the axis of the jet. The mass flow rate of the jet is 50 kg/min
    8·1 answer
  • Cold water at 20 degrees C and 5000 kg/hr is to be heated by hot water supplied at 80 degrees C and 10,000 kg/hr. You select fro
    14·1 answer
  • PLEASE HELP!<br> I'm in the middle of a test and the teacher didn't go over the material!
    10·1 answer
  • Reason fo I.EE regulations in electrical installations​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!