Answer:
Advantages
The main advantage in the use of pulleys is that the effort becomes less as compared to the normal lifting of the weights. In other words, it reduces the amount of actual force required to lift heavy objects. It also changes the direction of the force applied. These two advantages in the use pulleys make them an important tool for heavy lifting. It also provides a mechanical advantage.
The other advantage in the use of pulleys is that the distance between the operator and weight. There is a safe distance between them which avoids any disaster. Pulleys are easy to assemble and cost-effective. The combination of different directional pulleys can change the position of the load with little effort. Though there are moving parts in the pulley system they require less or no lubrication after installation.
Disadvantages
Apart from the above-said advantages while using pulley systems, there are several disadvantages in their use. The main disadvantage in the use of the pulley system is that it requires large space to install and operate. The mechanical advantage of pulleys can go to higher values but need more space to install them.
In some cases, the ropes/belts move over the wheel with no grooves, the chances of the slip of ropes/belts from the wheel are inevitable. If the system is installed to use for a long time, they require maintenance and regular check-up of ropes/cables as the friction between the wheels and cables/ropes occur causing wear and tear to them. Continuous use of the system makes the ropes weak. The rope may break while using the system causing damages to the operator, surrounding place and the load which is being lifted.
Given:
mass of water, m = 2000 kg
temperature, T =
= 303 K
extacted mass of water = 100 kg
Atmospheric pressure, P = 101.325 kPa
Solution:
a) Using Ideal gas equation:
PV = m
T (1)
where,
V = volume
m = mass of water
P = atmospheric pressure

R= Rydberg's constant = 8.314 KJ/K
M = molar mass of water = 18 g/ mol
Now, using eqn (1):



Therefore, the volume of the tank is 
b) After extracting 100 kg of water, amount of water left, m' = m - 100
m' = 2000 - 100 = 1900 kg
The remaining water reaches thermal equilibrium with surrounding temperature at T' =
= 303 K
At equilibrium, volume remain same
So,
P'V = m'
T'
Therefore, the final pressure is P' = 96.258 kPa
Answer:
1.0MG
Explanation:
to solve this problem we use this formula
S₀-S/t = ksx --- (1)
the values have been given as
concentration = S₀ = 250mg
effluent concentration = S= 10mg
value of K = 0.04L/day
x = 3000 mg
when we put these values into this equation,
250-10/t = 0.04x10x3000
240/t = 1200
we cross multiply from this stage
240 = 1200t
t = 240/1200
t = 0.2
remember the question says that 5MGD is required to be treated
so the volume would be
v = 0.2x5
= 1.0 MG
Answer:
If you mean two sides are 7 and two sides are 14 then you'd have 42
and for the second you'd have 14
Explanation:
7 + 7 = 14, 14 + 14 = 28, 14 + 28 = 42
3 + 3 = 6, 4 + 4 = 8, 8 + 6 = 14