Answer:
The chemical equation by putting, a 2 on C₅H₁₂O, 15 on O₂, 10 on CO₂ , and 12 on H₂O in the equation;
2C₅H₁₂O + 15O₂ → 10CO₂ + 12H₂O
Explanation:
- Chemical equations are balanced by putting coefficients on the reactants and products to ensure the total number of atoms on the left side equal to those on the right side.
- Balancing chemical equations is done to make chemical equations obey the law of conservation of mass.
- According to the law of conservation of mass, the mass of the reactants should always be equal to the mass of products.
- This is done by balancing chemical equations to ensure the total number of atoms on the left side is equal to that on the right side.
- Therefore, the balanced equation is;
2C₅H₁₂O + 15O₂ → 10CO₂ + 12H₂O
Answer: Option (d) is the correct answer.
Explanation:
As it is known that like dissolves like. So, water being a polar compound is able to dissolve only polar compounds.
Hence, a compound that is ionic or polar in nature will readily dissolve in water. Whereas non-polar compounds will be insoluble in water.
As
is a non-polar compound. Hence, it is insoluble in water.
On the other hand,
is a polar compound due to difference in electronegativity of chlorine and carbon atom there will be development of partial charges. Hence, there will be dipole-dipole forces existing between them.
Whereas
is an ionic compound and it will readily dissociate into ions when dissolved in water. Also, there will be ion-dipole interactions between sodium and nitrate ions.
Hence,
will readily dissolve in water.
Thus, we can conclude that the compounds correctly arranged in order of increasing solubility in water are
<
<
.
D = m / V
d = 1300 g / 743 cm³
d = 1.749 g/cm³
Answer:
Ca, Zn, Ni, Al, Fe
Explanation:
The activity series is an arrangement of metals in order of decreasing reactivity.
Metals that are high up in the activity series are very reactive. They displace metals that are lower in the activity series from an aqueous solution of their salts.
The metals; Ca, Zn, Ni, Al, Fe are all above Pb in the activity series hence they will cause Pb2+ ions to come out of solution as solid Pb.