F the solubility of a gas in water is 5.0g/L when the pressure of the gas above the water is 2.0 atm, what is the pressure of the gas above the water <span>when the solubility of the gas is 1.0 g/L</span>
Here's how to solve this one.
The formula for solubility is
<span>P1 / P2 = solubility1 / solubility2 </span>
P1=2*1/5= .4 atm
So the correct answer is 0.4 atm.
POH = - log [ OH⁻ ]
pOH = - log [ 1 x 10⁻⁹ ]
pOH = 9
Answer C
hope this helps!
Answer:
-125 kJ
Explanation:
You calculate the energy required to break all the bonds in the reactants. Then you subtract the energy to break all the bonds in the products.
H₂C=CH₂ + H₂ ⟶ H₃C-CH₃
Bonds: 4C-H + 1C=C 1H-H 6C-H + 1C-C
D/kJ·mol⁻¹: 413 612 436 413 347
The formula relating ΔHrxn and bond dissociation energies (D) is
ΔHrxn = Σ(Dreactants) – Σ(Dproducts)
(Note: This is an exception to the rule. All other thermochemical reactions are “products – reactants”. With bond energies, it’s “reactants – products”. The reason comes from the way we define bond energies.)
<em>For the reactant</em>s:
Σ(Dreactants) = 4 × 413 + 1 × 612 + 1 × 436 = 2700 kJ
<em>For the products:</em>
Σ(Dproducts) = 6 × 413 + 1 × 347 = 2825 kJ
<em>For the system</em>
:
ΔHrxn = 2700 - 2825 = -125 kJ
Answer;
=259 ml
Explanation;
-According to Gay Lussac's Law of Combining Volumes when gases react, they do so in volumes which have a simple ratio to one another, and to the volume of the product formed if gaseous, provided the temperature and pressure remain constant.
-Thus; from the volume of nitrogen and oxygen gases; we have; 316 / 178 = 1.775 moles of nitrogen gas per mole of oxygen gas.
-Therefore, nitrogen gas is the limiting reactant, and for each mole of nitrogen gas used, we will get 1 mole of N2O. This means the resulting volume of N2O with 100% yield will be the same as the volume of nitrogen gas used, thus, 100% yield will produce 316 mL.
However, with 82% yield the volume would be; 316 × 82/100 =259 ml
Therefore; the volume of N2O at 82% yield will be 259 ml