Answer:
Explanation:
Bisulphate ion is a weak acid as it can form hydronium ion in water .
HSO₄⁻ + H₂O ⇄ SO₄⁻² + H₃O⁺
The equilibrium constant of this reaction is very small , hence bisulphate ion is very weak acid.
Answer:
2.5 × 10⁻⁵ M H₃O⁺ and 4.0 × 10⁻¹⁰ M OH⁻.
Explanation:
<em>∵ pH = - log[H₃O⁺]</em>
∴ 4.6 = - log[H₃O⁺].
∴ log[H₃O⁺] = - 4.6.
∴ [H₃O⁺] = 2.51 x 10⁻⁵.
∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.
[H₃O⁺] = 2.51 x 10⁻⁵ M.
∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺] = 10⁻¹⁴/(2.51 x 10⁻⁵ M) = 3.98 × 10⁻¹⁰ M ≅ 4.0 × 10⁻¹⁰ M.
<em>So, the right choice is: 2.5 × 10⁻⁵ M H₃O⁺ and 4.0 × 10⁻¹⁰ M OH⁻.</em>
It can be found that 337.5 g of AgCl formed from 100 g of silver nitrate and 258.4 g of AgCl from 100 g of CaCl₂.
<u>Explanation:</u>
2AgNO₃ + CaCl₂ → 2 AgCl + Ca(NO₃)₂
We have to find the amount of AgCl formed from 100 g of Silver nitrate by writing the expression.

= 337.5 g AgCl
In the same way, we can find the amount of silver chloride produced from 100 g of Calcium chloride.
It can be found as 258.4 g of AgCl produced from 100 g of Calcium chloride.
Answer:
Concentration, because the amounts of reactants and products remain constant after equilibrium is reached.
Explanation:
The rate of reaction refers to the amount of reactants converted or products formed per unit time.
As the reaction progresses, reactions are converted into products. This continues until equilibrium is attained in a closed system.
When equilibrium is attained, the rate of forward reaction is equal to the rate of reverse reaction, hence the concentration of reactants and products in the system remain fairly constant over time.
When deducing the rate of reaction, concentration of the specie of interest is plotted on the y-axis against time on the x-axis.