The change in the player's internal energy is -491.6 kJ. The number of nutritional calories is -117.44 kCal
For this process to take place, some of the basketball player's perspiration must escape from the skin. This is because sweating relies on a physical phenomenon known as the heat of vaporization.
The heat of vaporization refers to the amount of heat required to convert 1g of a liquid into a vapor without causing the liquid's temperature to increase.
From the given information,
- the work done on the basketball is dW = 2.43 × 10⁵ J
The amount of heat loss is represented by dQ.
where;
∴
Using the first law of thermodynamics:b
dU = dQ - dW
dU = -mL - dW
dU = -(0.110 kg × 2.26 × 10⁶ J/kg - 2.43 × 10⁵ J)
dU = -491.6 × 10³ J
dU = -491.6 kJ
The number of nutritional calories the player has converted to work and heat can be determined by using the relation:

dU = -117.44 kcal
Learn more about first law of thermodynamics here:
brainly.com/question/3808473?referrer=searchResults
90 percent a day to keep things running smoothly
The so-called "terminal velocity" is the fastest that something can fall
through a fluid. Even though there's a constant force pulling it through,
the friction or resistance of plowing through the surrounding substance
gets bigger as the speed grows, so there's some speed where the resistance
is equal to the pulling force, and then the falling object can't go any faster.
A few examples:
-- the terminal velocity of a sky-diver falling through air,
-- the terminal velocity of a pecan falling through honey,
-- the terminal velocity of a stone falling through water.
It's not possible to say that "the terminal velocity is ----- miles per hour".
If any of these things changes, then the terminal velocity changes too:
-- weight of the falling object
-- shape of the object
-- surface texture (smoothness) of the object
-- density of the surrounding fluid
-- viscosity of the surrounding fluid .
Answer:
FB = 0.187 N
Explanation:
To find the magnetic force FB in the wire you use the following formula:

the angle between B and L is given by:

Due to B depends on "y" you take into account the contribution of each element dy of the wire to the magnitude of the magnetic force. Thus, you have to integrate the following expression:
![|\vec{F_B}|=Isin\theta\int_0^{0.25}B(y)dy=Isin\theta\int_0^{0.25}(0.5y)dy\\\\|\vec{F_B}|=(2.0*10^{-3}A)(sin36.86\°)(0.5T)[\frac{0.25^2}{2}m]=0.187\ N](https://tex.z-dn.net/?f=%7C%5Cvec%7BF_B%7D%7C%3DIsin%5Ctheta%5Cint_0%5E%7B0.25%7DB%28y%29dy%3DIsin%5Ctheta%5Cint_0%5E%7B0.25%7D%280.5y%29dy%5C%5C%5C%5C%7C%5Cvec%7BF_B%7D%7C%3D%282.0%2A10%5E%7B-3%7DA%29%28sin36.86%5C%C2%B0%29%280.5T%29%5B%5Cfrac%7B0.25%5E2%7D%7B2%7Dm%5D%3D0.187%5C%20N)
hence, the magnitude of the magnetic force is 0.187N
Answer:
The coefficient of rolling friction will be "0.011".
Explanation:
The given values are:
Initial speed,

then,


Distance,
s = 18.2 m
The acceleration of a bicycle will be:
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
⇒ 
⇒ 
As we know,
⇒ 
and,
⇒ 
⇒ 
On substituting the values, we get
⇒ 
⇒ 