Option A, current (thumb) to magnetic field (fingers)
As per the First right-hand rule,
Using right hand, if we suppose that thumb points towards the electric current
fingers curl towards the magnetic field
Answer:
the rate of acceleration of the train is 4 m/s²
Explanation:
Given;
initial velocity of the train, u = 10 m/s
change in time of motion, dt = 5 s
final velocity of the train, v = 30 m/s
The rate of acceleration of the train is calculated as;

Therefore, the rate of acceleration of the train is 4 m/s²
46.6666 that is the mass number
Explanation:
14 divided 3.0
Answer:
An aircraft flying at sea level with a speed of 220 m/s, has a highest pressure of 29136.8 N/m²
Explanation:
Applying Bernoulli's equation, we determine the highest pressure on the aircraft.

where;
P is the highest pressure on the aircraft
is the density of air = 1.204 kg/m³ at sea level temperature.
V is the velocity of the aircraft = 220 m/s
P = 0.5*1.204*(220)² = 29136.8 N/m²
Therefore, an aircraft flying at sea level with a speed of 220 m/s, has a highest pressure of 29136.8 N/m²
Answer:
Explanation:
The mass of the car doesn't matter because On a flat curve the mass of the car does not affect the speed at which it can stay on the curve. You would need the mass if you were solving the the centripetal force acting on the car, but not the acceleration.
and filling in
and we need 2 significant digits in our answer. That means that
a = 1.5 m/sec²