Answer: h = 20.92 m
Explanation: By using the law of conservation of energy, the kinetic energy of the ball equals it potential energy.
Kinetic energy =mv^2/2
Potential energy = mgh
Where m = mass of the object, v = velocity of object = 23.5 m/s
g = acceleration due gravity = 9.8 m/s^2
mv^2/2 = mgh
m cancels out each other on both sides , hence we have that
v^2 = 2gh.
We want the ball to move towards the wall (horizontal motion), hence we need the horizontal component of the velocity since the velocity is inclined at an angle of 30.5 to the ground (horizontal).
Hence v = 23.5 × cos 30.5, v = 20.248 m/s
Recall that v^2 = 2gh
(20.248)^2 = 2×9.8×h
409.98 = 19.6 h
h = 409.98/ 19.6
h = 20.92 m
Answer: YES
They always move towards the earth or any metallic conductor
Explanation:
Electric discharge between two objects follows a predictable path? YES
Static electricity is a buildup of electric charges on objects. Charges build up when negative electrons are transferred from one object to another. The object that gives up electrons becomes positively charged, and the object that accepts the electrons becomes negatively charged.
Once an object becomes electrically charged, it is likely to remain charged until it touches another object or at least comes very close to another object. That’s because electric charges cannot travel easily through air, especially if the air is dry.
They always move towards the earth or any metallic conductor
Answer:
All of a,b, and c hope this helps
Answer:
30cm^3
Explanation:
ml means milliliter, 1 ml= 1cm^3 that's the unit for volume
hence
Δv=185-155=30ml=30cm^3