The answer is B
second law
C) total linear momentum of the ball and cannon is conserved.
Basically it happens that in the beginning before there is a momentum acting on the two bodies, these are a unique system. Here the total momentum of the System is 0. However, when the positive momentum of the cannonball is added, the system will be immediately affected by a negative momentum which will pull back the cannon. Could this be extrapolated as a condition of Newton's third law.
You should disconnect all wires from the circuit or make sure the switch is off or batteries are out
Zero.
Acceleration is defined as the change in velocity over time.
Since in your case there is no change, there is no acceleration, so it is zero:
Or in formula: <span>a=<span><span>Δv</span>t</span></span>
Where a=acceleration, <span>Δv</span>=change in velocity and t=time
Answer:
Electromagnetic waves consist of both electric and magnetic field waves. These waves oscillate in perpendicular planes with respect to each other, and are in phase. The creation of all electromagnetic waves begins with an oscillating charged particle, which creates oscillating electric and magnetic fields.
Explanation: