The name of this alkane is with central carbons are bonded to c h 3 is 2-methylbutane.
<h3>
What is alkane?</h3>
Alkanes belong to the family of saturated hydrocarbons with carbon carbon single bond.
For the given alkane;
CH₃ H
CH₃ - C - C - CH₃
H H
Thus, the name of this alkane is with central carbons are bonded to c h 3 is 2-methylbutane.
Learn more about alkane here: brainly.com/question/24270289
#SPJ4
Answer: 1.
moles
2. 90 mg
Explanation:

According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus
moles of ozone is removed by =
moles of sodium iodide.
Thus
moles of sodium iodide are needed to remove
moles of 
2. 
According to stoichiometry:
1 mole of ozone is removed by 2 moles of sodium iodide.
Thus 0.0003 moles of ozone is removed by =
moles of sodium iodide.
Mass of sodium iodide=
(1g=1000mg)
Thus 90 mg of sodium iodide are needed to remove 13.31 mg of
.
The following are the answers to the different questions:
<span>The four rows of data below show the boiling points for a solution with no solute, sucrose (C12H22O11), sodium chloride (NaCl), and calcium chloride (CaCl2) (not in that order). Which boiling point corresponds to calcium chloride?
A. 101.53° C
Which of the following solutions will have the lowest freezing point?
D. 1.0 mol/kg magnesium fluoride (MgF2)
Which of the following compounds will be most effective in melting the ice on the roads when the air temperature is below zero?
A. sodium iodide (NaI)
Four different solutions have the following vapor pressures at 100°C. Which solution will have the greatest boiling point?
B. 96.3 kPa
Four different solutions have the following boiling points. Which boiling point corresponds to a solution with the lowest freezing point?
D. 108.1°C</span>
The answer is 6.88.
Solution:
We can calculate for the percent composition of CaCl2 by mass by dividing the mass of the CaCl2 solute by the mass of the solution and then multiply by 100. The total mass of the resulting solution is the sum of the mass of CaCl2 solute and the mass of water solvent. Therefore, the percent composition of CaCl2 by mass is
% by mass = (mass of the solute / mass of the solution)*100
= mass of solute / (mass of the solute + mass of the solvent)*100
= (27.7 g CaCl2 / 27.7g + 375g) * 100
= 6.88
Not 100% sure if its right.
When an object covers equal distances in equal amounts of time, it is moving at a constant speed.