Explanation:
Given parameters:
Number of moles of the sulfur trioxide = 1.55kmol = 1.55 x 10³mole
Unknown:
Mass of the sulfur trioxide = ?
Solution:
To solve for the mass of the sample of sulfur trioxide:
- Find the molar mass of the compound i.e SO₃
atomic mass of S = 32g
O = 16g
molar mass = 32 + 3(16) = 80g/mol
mass of SO₃ = number of moles x molar mass
mass of SO₃ = 1.55 x 10³ x 80 = 124000g or 124kg
Learn more:
mole calculation brainly.com/question/13064292
#learnwithBrainly
Answer:
1) thiamine pyrophosphate -activation of aldehydes
2) coenzyme A -acyl group transfer
3) biotin -CO2 activation/transfer
4) NAD -oxidation/reduction
Explanation:
1. Thiamine pyrophosphate: This is a derivative of Vitamin B1 also known as thiamine. It contains a pyrimidine group linked to the thiazole ring. This connection is further linked to the pyrophosphate group. It functions as a coenzyme in all reactions involving alpha-keto acids. This produces activated aldehydes that could be subject to oxidation.
2. Coenzyme A: This cofactor is a thiol that reacts with carboxylic acids to form thioesters. In so doing, it carries the acyl group. In this condition, it can also be referred to as acyl CoA.
3. Biotin: Also known as Vitamin B7, biotin consists of an ureido ring merged with tetrahydrothiophene. The ureido ring contains the CO2 that can be transferred or activated. Five carboxylase enzymes use biotin as a cofactor in processes such as fat synthesis, glucose generation and the breakdown of sugar.
4. NAD: Nicotinamide adenine dinucleotide consists of two dinucleotides connected to each other at their phosphate groups. NAD exists in two states which are the NAD+ and NADH states. These two states serve as oxidizing and reducing agents respectively. The oxidizing agent becomes reduced to NADH after accepting electrons from other compounds. NADH donates an electron and becomes oxidized to NAD+.
Answer:
450g of coke (C)
Explanation:
Step 1:
The balanced equation for the reaction is given below:
3C(s) + 2SO2(g) —> CS2(s) + 2CO2(g)
Step 2:
Determination of the mass of C that reacted and the mass of CS2 produced from the balanced equation.
This is illustrated below:
Molar Mass of C = 12g/mol
Mass of C from the balanced equation = 3 x 12 = 36g
Molar Mass of CS2 = 12 + (32x2) = 12 + 64 = 76g/mol.
From the balanced equation above, 36g of C reacted to produce 76g of CS2.
Step 3:
Determination of the mass of C required to produce 950g of CS2. This is illustrated below:
From the balanced equation above, 36g of C reacted to produce 76g of CS2.
Therefore, Xg of C will react to produce 950g of CS2 i.e
Xg of C = (36 x 950)/76
Xg of C = 450g
From the calculations made above, 450g of coke (C) is needed to produce 950g of CS2.