Answer. Second Option: .85p_o=p_o e^-.00012h
Solution:
P(h)=Po e^(-0.00012h)
Air pressure: P(h)
Height above the surface of the Earth (in meters): h
Air pressure at the sea level: Po
Height at which air pressure is 85% of the air pressure at sea level:
h=?, P(h)=85% Po
P(h)=(85/100) Po
P(h)=0.85 Po
Replacing P(h) by 0.85 Po in the formula above:
P(h)=Po e^(-0.00012h)
0.85 Po = Po e^(-0.00012h)
<span>
D)
<span>
<span>
<span>
The average kinetic energy of the molecules that make up the solution also increases with increasing temperature. This increase in kinetic energy allows the solvent molecules to more effectively break apart the solute molecules that are held together by intermolecular attractions. </span></span></span></span>
It doesn't because when u threw it the first time, u notice that the ball eventually came to a stop because of the force that was acting upon it. Although when u throw it harder it will start out faster than the first time u threw it because u put more kinetic energy onto the ball. But the same thing happens with this ball that happened to the second ball, they both have a type of force acting upon them.
Answer:
v = 1.6 m/s
Explanation:
Given that,
Distance, d = 72 m
Time taken, t = 45 s
We need to find their average velocity. Average velocity of an object is given by total distance divided by total time taken.

So, their average velocity is 1.6 m/s.
Answer:
1.54 m/s²
Explanation:
The free-fall acceleration is calculated as
g = w²r
Where w is the angular velocity of the satellite and r is the radius of the moon.
The angular velocity can be calculated as

Where T is the period, so
T = 110 min = 110 x 60 s = 6600 s
Then,

Finally, the radius of the moon is r = 1.7 x 10⁶ m, so the free-fall acceleration is

Therefore, the answer is 1.54 m/s²