1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inga [223]
3 years ago
6

34.9x46x809 Please helpp

Physics
1 answer:
Fed [463]3 years ago
6 0
<h2>34.9×46×809</h2><h3>=1605.4×809 </h3><h3>=1298768.6</h3>

please mark this answer as brainlist

You might be interested in
Three small balls of the same size but different masses are hung side-by-side in parallel on the strings of same length. They to
andrey2020 [161]

Answer:

m1/6 ( c )

Explanation:

since all the balls starts having the same momentum after the two collisions we will apply the principal of conservation of energy

After first collision

m1v = m1v1 + m2v2 --- ( 1 )

After second collision

m2v2 = m2v2 + m3v3   ---- ( 2 )

combining equations 1 and 2

m1v = m1v1 + m2v2 + m3v3  ----- ( 3 )

All balls moving at the same momentum ( p ) = m1v1 = m2v2 = m3v3

note ; 3p = m1v ∴ m3 = \frac{m1v}{3v3}  -----  ( 4 )

applying conservation of energy

3v = v1 + v2 + v3 ------- ( 5 )

also 3m1v1 = m1v = v1 = v/3 =

v2 + v3 = 8/3 v ----- ( 6 )

next eliminate V3 for equation 6 by applying conservation of energy and momentum

m1 =  2m2 ------ ( 7 )

now using p1 = p2 = m1v1 = 1/2 m1v1  hence v2 = 2v1  where v1 = 1/3 v

hence ; v2 = 2/3 v ------- ( 8 )

solving with equation 6 and 8

v3 = 2v ------ ( 9 ) ∴  v/v3 = 1/2 ---- ( 10 )

solving with equation 9 and 10

m3 = m1/3 * 1/2 = m1/6

8 0
3 years ago
What's the weight of a 30x30x50 cm body with the density of 1.8/cm cube?
grin007 [14]

Answer:

The weight of the body, W = 793.8 m/s²

Explanation:

Given,

The volume of the body, v = 45,000 cm³

The density of the body, ρ = 1.8 g/cm³

The mass of the body is given by the formula,

                                  m = ρ x v

                                      = 1.8 g/cm³ x 45,000 cm³

                                      = 81,000 g

Hence, the mass of the body is m = 81 kg

The weight of the body,

                                           W = m x g

                                                = 81 kg x 9.8 m/s²

                                                = 793.8 m/s²

Hence, the weight of the body, W = 793.8 m/s²

3 0
3 years ago
Solve the problems.
faltersainse [42]

Answer:

v= 1.911×10^8m/s

Explanation:

n=c/v

v=c/n

v= 3.0×10^8/1.57

v= 1.911×10^8m/s

7 0
3 years ago
A car travels around a curve. What can you say about the centripetal force if the velocity is tripled?
Lesechka [4]

Answer:

F = M a = M v^2 / R

If v is increased by three the force will be increased by nine,

C) is correct

4 0
2 years ago
A potter's wheel is a uniform disk of mass of 10.0 kg and radius 20.0 cm. A 2.0-kg lump of clay, roughly cylindrical with radius
Lera25 [3.4K]

Answer:

b. 29.2 rev/min

Explanation:

  • Assuming no external torques acting during the process, total angular momentum must be conserved, as follows:

       L_{0} = L_{f}  (1)

  • The initial angular momentum L₀, can be expressed as follows:

        L_{0} = I_{0} * \omega_{0} (2)

        where I₀ = initial moment of inertia = moment of inertia of the disk +

        moment of inertia of the cylinder and ω₀ = initial angular velocity  =

       30.0 rev/min.

  • Replacing by the values, we get:I_{0} = \frac{1}{2} * m_{d} *r_{d} ^{2} + \frac{1}{2}* m_{c} *r_{c} ^{2}  = 0.2 kg*m2 +9e-4 kg*m2 = 0.2009 kg*m2 (3)⇒ L₀ = I₀* ω₀ = 0.2009 kg*m² * 30.0 rev/min = 6.027 kg*m²*rev/min
  • The final angular momentum can be written as follows:

       L_{f} = I_{f} * \omega_{f} (4)

       where If = final moment of inertia = moment of the inertia of the solid

      disk + moment of  inertia of the clay flattened on a disk, and ωf = final

      angular velocity.

  • Replacing by the values, we get:

   I_{f} = \frac{1}{2} * m_{d} *r_{d} ^{2} + \frac{1}{2}* m_{fd} *r_{fd} ^{2}  = 0.2 kg*m2 +6.4e-3 kg*m2 = 0.2064 kg*m2 (5)

       ⇒ Lo =Lf = If*ωf

  • Replacing (2) in (1), and solving for ωf, we get:

        \omega_{f} = \frac{L_{o}}{I_{f} } = \frac{6.027kg*m2*rev/min}{0.2064kg*m2} = 29.2 rev/min (6)

3 0
3 years ago
Other questions:
  • 4. It's important to know that science is:
    15·2 answers
  • Anika asks Eva to roll a basketball and then a bowling
    13·1 answer
  • Which of these correctly shows what happens when two magnets are placed side by side?
    14·1 answer
  • Which statement describes what happens when a balloon is rubbed with a wool cloth?
    12·2 answers
  • A pencil rolls horizontally of a 1 meter high desk and lands .25 meters from the base of the desk. How fast was the pencil rolli
    12·1 answer
  • ____________ showed that matter and energy are two forms of the same thing.
    10·2 answers
  • A diffusion couple of two metals, A and B, was fashioned as shown in Figure 5.1. After a 26 hour heat treatment at 1050°C (and s
    7·1 answer
  • A manufacturer provides a warranty against failure of a carbon steel product within the first 30 days after sale. Out of 1000 so
    8·1 answer
  • 1) draw a simple circuit with a voltage source and four resistors wired in series
    8·1 answer
  • Two charges of magnitude ‒Q and +4Q are located as in the figure below. At which position (A, B,
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!